ﻻ يوجد ملخص باللغة العربية
The same type of objects in different images may vary in their shapes because of rigid and non-rigid shape deformations, occluding foreground as well as cluttered background. The problem concerned in this work is the shape extraction in such challenging situations. We approach the shape extraction through shape alignment and recovery. This paper presents a novel and general method for shape alignment and recovery by using one example shapes based on deterministic energy minimization. Our idea is to use general model of shape deformation in minimizing active contour energies. Given emph{a priori} form of the shape deformation, we show how the curve evolution equation corresponding to the shape deformation can be derived. The curve evolution is called the prior variation shape evolution (PVSE). We also derive the energy-minimizing PVSE for minimizing active contour energies. For shape recovery, we propose to use the PVSE that deforms the shape while preserving its shape characteristics. For choosing such shape-preserving PVSE, a theory of shape preservability of the PVSE is established. Experimental results validate the theory and the formulations, and they demonstrate the effectiveness of our method.
Shape correspondence is a fundamental problem in computer graphics and vision, with applications in various problems including animation, texture mapping, robotic vision, medical imaging, archaeology and many more. In settings where the shapes are al
This paper introduces an unsupervised loss for training parametric deformation shape generators. The key idea is to enforce the preservation of local rigidity among the generated shapes. Our approach builds on an approximation of the as-rigid-as poss
We introduce a supervised-learning framework for non-rigid point set alignment of a new kind - Displacements on Voxels Networks (DispVoxNets) - which abstracts away from the point set representation and regresses 3D displacement fields on regularly s
Current non-rigid structure from motion (NRSfM) algorithms are mainly limited with respect to: (i) the number of images, and (ii) the type of shape variability they can handle. This has hampered the practical utility of NRSfM for many applications wi
Imperfect data (noise, outliers and partial overlap) and high degrees of freedom make non-rigid registration a classical challenging problem in computer vision. Existing methods typically adopt the $ell_{p}$ type robust estimator to regularize the fi