ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Characterization of Non-Abelian Moore-Read State using Density-Matrix Renormailzation Group

170   0   0.0 ( 0 )
 نشر من قبل W. Zhu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The non-Abelian topological order has attracted a lot of attention for its fundamental importance and exciting prospect of topological quantum computation. However, explicit demonstration or identification of the non-Abelian states and the associated statistics in a microscopic model is very challenging. Here, based on density-matrix renormalization group calculation, we provide a complete characterization of the universal properties of bosonic Moore-Read state on Haldane honeycomb lattice model at filling number $ u=1$ for larger systems, including both the edge spectrum and the bulk anyonic quasiparticle (QP) statistics. We first demonstrate that there are three degenerating ground states, for each of which there is a definite anyonic flux threading through the cylinder. We identify the nontrivial countings for the entanglement spectrum in accordance with the corresponding conformal field theory. Through inserting the $U(1)$ charge flux, it is found that two of the ground states can be adiabatically connected through a fermionic charge-$textit{e}$ QP being pumped from one edge to the other, while the ground state in Ising anyon sector evolves back to itself. Furthermore, we calculate the modular matrices $mathcal{S}$ and $mathcal{U}$, which contain all the information for the anyonic QPs. In particular, the extracted quantum dimensions, fusion rule and topological spins from modular matrices positively identify the emergence of non-Abelian statistics following the $SU(2)_2$ Chern-Simons theory.



قيم البحث

اقرأ أيضاً

This work concerns Ising quasiholes in Moore-Read type lattice wave functions derived from conformal field theory. We commence with constructing Moore-Read type lattice states and then add quasiholes to them. By use of Metropolis Monte Carlo simulati ons, we analyze the features of the quasiholes, such as their size, shape, charge, and braiding properties. The braiding properties, which turn out to be the same as in the continuum Moore-Read state, demonstrate the topological attributes of the Moore-Read lattice states in a direct way. We also derive parent Hamiltonians for which the states with quasiholes included are ground states. One advantage of these Hamiltonians lies therein that we can now braid the quasiholes just by changing the coupling strengths in the Hamiltonian since the Hamiltonian is a function of the positions of the quasiholes. The methodology exploited in this article can also be used to construct other kinds of lattice fractional quantum Hall models containing quasiholes, for example investigation of Fibonacci quasiholes in lattice Read-Rezayi states.
Topologically ordered phases of matter can be characterized by the presence of a universal, constant contribution to the entanglement entropy known as the topological entanglement entropy (TEE). The TEE can been calculated for Abelian phases via a cu t-and-glue approach by treating the entanglement cut as a physical cut, coupling the resulting gapless edges with explicit tunneling terms, and computing the entanglement between the two edges. We provide a first step towards extending this methodology to non-Abelian topological phases, focusing on the generalized Moore-Read (MR) fractional quantum Hall states at filling fractions $ u=1/n$. We consider interfaces between different MR states, write down explicit gapping interactions, which we motivate using an anyon condensation picture, and compute the entanglement entropy for an entanglement cut lying along the interface. Our work provides new insight towards understanding the connections between anyon condensation, gapped interfaces of non-Abelian phases, and TEE.
Moore-Read states can be expressed as conformal blocks of the underlying rational conformal field theory, which provides a well explored description for the insertion of quasiholes. It is known, however, that quasielectrons are more difficult to desc ribe in continuous systems, since the natural guess for how to construct them leads to a singularity. In this work, we show that the singularity problem does not arise for lattice Moore-Read states. This allows us to construct Moore-Read Pfaffian states on lattices for filling fraction 5/2 with both quasiholes and quasielectrons in a simple way. We investigate the density profile, charge, size and braiding properties of the anyons by means of Monte Carlo simulations. Further we derive an exact few-body parent Hamiltonian for the states. Finally, we compare our results to the density profile, charge and shape of anyons in the Kapit-Mueller model by means of exact diagonalization.
We introduce the transcorrelated Density Matrix Renormalization Group (tcDMRG) theory for the efficient approximation of the energy for strongly correlated systems. tcDMRG encodes the wave function as a product of a fixed Jastrow or Gutzwiller correl ator and a matrix product state. The latter is optimized by applying the imaginary-time variant of time-dependent (TD) DMRG to the non-Hermitian transcorrelated Hamiltonian. We demonstrate the efficiency of tcDMRG at the example of the two-dimensional Fermi-Hubbard Hamiltonian, a notoriously difficult target for the DMRG algorithm, for different sizes, occupation numbers, and interaction strengths. We demonstrate fast energy convergence of tcDMRG, which indicates that tcDMRG could increase the efficiency of standard DMRG beyond quasi-monodimensional systems and provides a generally powerful approach toward the dynamic correlation problem of DMRG.
We present an infinite density-matrix renormalization group (DMRG) study of an interacting continuum model of twisted bilayer graphene (tBLG) near the magic angle. Because of the long-range Coulomb interaction and the large number of orbital degrees of freedom, tBLG is difficult to study with standard DMRG techniques -- even constructing and storing the Hamiltonian already poses a major challenge. To overcome these difficulties, we use a recently developed compression procedure to obtain a matrix product operator representation of the interacting tBLG Hamiltonian which we show is both efficient and accurate even when including the spin, valley and orbital degrees of freedom. To benchmark our approach, we focus mainly on the spinless, single-valley version of the problem where, at half-filling, we find that the ground state is a nematic semimetal. Remarkably, we find that the ground state is essentially a k-space Slater determinant, so that Hartree-Fock and DMRG give virtually identical results for this problem. Our results show that the effects of long-range interactions in magic angle graphene can be efficiently simulated with DMRG, and opens up a new route for numerically studying strong correlation physics in spinful, two-valley tBLG, and other moire materials, in future work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا