ﻻ يوجد ملخص باللغة العربية
We investigate static correlation and delocalization errors in the self-consistent GW and random-phase approximation (RPA) by studying molecular dissociation of the H_2 and LiH molecules. Although both approximations contain topologically identical diagrams, the non-locality and frequency dependence of the GW self-energy crucially influence the different energy contributions to the total energy as compared to the use of a static local potential in the RPA. The latter leads to significantly larger correlation energies which allow for a better description of static correlation at intermediate bond distances. The substantial error found in GW is further analyzed by comparing spin-restricted and spin-unrestricted calculations. At large but finite nuclear separation their difference gives an estimate of the so-called fractional spin error normally determined only in the dissociation limit. Furthermore, a calculation of the dipole moment of the LiH molecule at dissociation reveals a large delocalization error in GW making the fractional charge error comparable to the RPA. The analyses are supplemented by explicit formulae for the GW Greens function and total energy of a simplified two-level model providing additional insights into the dissociation limit.
In many-body perturbation theory (MBPT) the self-energy Sigma=iGWGamma plays the key role since it contains all the many body effects of the system. The exact self-energy is not known; as first approximation one can set the vertex function Gamma to u
Quantum embedding approaches involve the self-consistent optimization of a local fragment of a strongly correlated system, entangled with the wider environment. The `energy-weighted density matrix embedding theory (EwDMET) was established recently as
We present quasiparticle (QP) energies from fully self-consistent $GW$ (sc$GW$) calculations for a set of prototypical semiconductors and insulators within the framework of the projector-augmented wave methodology. To obtain converged results, both f
The emph{GW} approximation takes into account electrostatic self-interaction contained in the Hartree potential through the exchange potential. However, it has been known for a long time that the approximation contains self-screening error as evident
The self-consistent harmonic approximation is extended in order to account for the existence of Klein factors in bosonized Hamiltonians. This is important for the study of finite systems where Klein factors cannot be ignored a priori. As a test we ap