ترغب بنشر مسار تعليمي؟ اضغط هنا

H.E.S.S. reveals a lack of TeV emission from the supernova remnant Puppis A

133   0   0.0 ( 0 )
 نشر من قبل Igor Oya
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Puppis A is an interesting ~4 kyr-old supernova remnant (SNR) that shows strong evidence of interaction between the forward shock and a molecular cloud. It has been studied in detail from radio frequencies to high-energy (HE, 0.1-100 GeV) gamma-rays. An analysis of the Fermi-LAT data has shown an extended HE gamma-ray emission with a 0.2-100 GeV spectrum exhibiting no significant deviation from a power law, unlike most of the GeV-emitting SNRs known to be interacting with molecular clouds. This makes it a promising target for imaging atmospheric Cherenkov telescopes (IACTs) to probe the gamma-ray emission above 100 GeV. Very-high-energy (VHE, E >= 0.1 TeV) gamma-ray emission from Puppis A is for the first time searched for with the High Energy Stereoscopic System (H.E.S.S.). The analysis of the H.E.S.S. data does not reveal any significant emission towards Puppis A. The derived upper limits on the differential photon flux imply that its broadband gamma-ray spectrum must exhibit a spectral break or cutoff. By combining Fermi-LAT and H.E.S.S. measurements, the 99% confidence level upper limits on such a cutoff are found to be 450 and 280 GeV, assuming a power law with a simple exponential and a sub-exponential cutoff, respectively. It is concluded that none of the standard limitations (age, size, radiative losses) on the particle acceleration mechanism, assumed to be still on-going at present, can explain the lack of VHE signal. The scenario in which particle acceleration has ceased some time ago is considered as an alternative explanation. The HE/VHE spectrum of Puppis A could then exhibit a break of non-radiative origin, (as observed in several other interacting SNRs, albeit at somewhat higher energies) owing to the interaction with dense and neutral material in particular towards the northeastern region.



قيم البحث

اقرأ أيضاً

G349.7+0.2 is a young Galactic supernova remnant (SNR) located at the distance of 11.5 kpc and observed across the entire electromagnetic spectrum from radio to high energy (HE) Gamma-rays. Radio and infrared observations indicate that the remnant is interacting with a molecular cloud. In this paper, the detection of very high energy (VHE) Gamma-ray emission coincident with this SNR with the High Energy Stereoscopic System (H.E.S.S.) is reported. An integral flux F(E>400GeV)=(6.5 +-1.1stat +-1.3syst) x 10^{-13} ph/cm/s corresponding to 0.7% of that of the Crab Nebula and to a luminosity of 10^34 erg/s above the same energy threshold, and a steep photon index Gamma_VHE = 2.8 +-0.27stat +-0.20syst are measured. The analysis of more than 5 yr of Fermi-LAT data towards this source shows a power-law like spectrum with a best-fit photon index Gamma_HE = 2.2 +-0.04stat +0.13-0.31syst. The combined Gamma-ray spectrum of G349.7+0.2 can be described by either a broken power-law (BPL) or a power-law with exponential (or sub-exponential) cutoff (PLC). In the former case, the photon break energy is found at E_br,gamma = 55 +70-30 GeV, slightly higher than what is usually observed in the HE/VHE Gamma-ray emitting middle-aged SNRs known to be interacting with molecular clouds. In the latter case, the exponential (respectively sub-exponential) cutoff energy is measured at E_cut,gamma = 1.4 +1.6-0.55 (respectively 0.35 +0.75-0.21) TeV. A pion-decay process resulting from the interaction of the accelerated protons and nuclei with the dense surrounding medium is clearly the preferred scenario to explain the Gamma-ray emission. The BPL with a spectral steepening of 0.5-1 and the PLC provide equally good fits to the data. The product of the average gas density and the total energy content of accelerated protons and nuclei amounts to nH Wp ~ 5 x 10^51 erg/cm3.
143 - V. A. Acciari , E. Aliu , T. Arlen 2011
We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tychos supernova remnant. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak e mission coming from the direction of the remnant, compatible with a point source located at $00^{rm h} 25^{rm m} 27.0^{rm s}, +64^{circ} 10^{prime} 50^{primeprime}$ (J2000). The TeV photon spectrum measured by VERITAS can be described with a power-law $dN/dE = C(E/3.42;textrm{TeV})^{-Gamma}$ with $Gamma = 1.95 pm 0.51_{stat} pm 0.30_{sys}$ and $C = (1.55 pm 0.43_{stat} pm 0.47_{sys}) times 10^{-14}$ cm$^{-2}$s$^{-1}$TeV$^{-1}$. The integral flux above 1 TeV corresponds to $sim 0.9%$ percent of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models which can describe the data. The lowest magnetic field allowed in these models is $sim 80 mu$G, which may be interpreted as evidence for magnetic field amplification.
Supernova remnants (SNRs) are prime candidates for efficient particle acceleration up to the knee in the cosmic ray particle spectrum. In this work we present a new method for a systematic search for new TeV-emitting SNR shells in 2864 hours of H.E.S .S. phase I data used for the H.E.S.S. Galactic Plane Survey. This new method, which correctly identifies the known shell morphologies of the TeV SNRs covered by the survey, HESS J1731-347, RX 1713.7-3946, RCW 86, and Vela Junior, reveals also the existence of three new SNR candidates. All three candidates were extensively studied regarding their morphological, spectral, and multi-wavelength (MWL) properties. HESS J1534-571 was associated with the radio SNR candidate G323.7-1.0, and thus is classified as an SNR. HESS J1912+101 and HESS J1614-518, on the other hand, do not have radio or X-ray counterparts that would permit to identify them firmly as SNRs, and therefore they remain SNR candidates, discovered first at TeV energies as such. Further MWL follow up observations are needed to confirm that these newly discovered SNR candidates are indeed SNRs.
We report the detection of TeV gamma-rays from the shell-type supernova remnant RX J0852.0-4622 with data of 3.2 h of live time recorded with H.E.S.S. in February 2004. An excess of (700 +/- 60) events from the whole remnant with a significance of 12 sigma was found. The observed emission region is clearly extended with a radius of the order of 1 degree and the spatial distribution of the signal correlates with X-ray observations. The spectrum in the energy range between 500 GeV and 15 TeV is well described by a power law with a photon index of 2.1 +/- 0.1(stat) +/- 0.2(syst) and a differential flux at 1 TeV of (2.1 +/- 0.2(stat) +/- 0.6(syst)) 10^{-11} cm^{-2} s^{-1} TeV^{-1}. The integral flux above 1 TeV was measured to be (1.9 +/- 0.3(stat) +/- 0.6(syst)) 10^{-11} cm^{-2} s^{-1}, which is at the level of the flux of the Crab nebula at these energies. More data are needed to draw firm conclusions on the magnetic field in the remnant and the type of the particle population creating the TeV gamma-rays.
SNR G24.7+0.6 is a 9.5 kyrs radio and $gamma$-ray supernova remnant evolving in a dense medium. In the GeV regime, SNR G24.7+0.6 (3FHL,J1834.1--0706e/FGES,J1834.1--0706) shows a hard spectral index ($Gamma$$sim$2) up to $200$,GeV, which makes it a go od candidate to be observed with Cherenkov telescopes such as MAGIC. We observed the field of view of snr with the MAGIC telescopes for a total of 31 hours. We detect very high energy $gamma$-ray emission from an extended source located 0.34degr away from the center of the radio SNR. The new source, named mgc is detected up to 5,TeV, and its spectrum is well-represented by a power-law function with spectral index of $2.74 pm 0.08$. The complexity of the region makes the identification of the origin of the very-high energy emission difficult, however the spectral agreement with the LAT source and overlapping position at less than 1.5$sigma$ point to a common origin. We analysed 8 years of fermi-LAT data to extend the spectrum of the source down to 60,MeV. fermi-LAT and MAGIC spectra overlap within errors and the global broad band spectrum is described by a power-law with exponential cutoff at $1.9pm0.5$,TeV. The detected $gamma$-ray emission can be interpreted as the results of proton-proton interaction between the supernova and the CO-rich surrounding.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا