ترغب بنشر مسار تعليمي؟ اضغط هنا

A trace for bimodule categories

140   0   0.0 ( 0 )
 نشر من قبل Christoph Schweigert
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a 2-functor that assigns to a bimodule category over a finite k-linear tensor category a k-linear abelian category. This 2-functor can be regarded as a category-valued trace for 1-morphisms in the tricategory of finite tensor categories. It is defined by a universal property that is a categorification of Hochschild homology of bimodules over an algebra. We present several equivalent realizations of this 2-functor and show that it has a coherent cyclic invariance. Our results have applications to categories associated to circles in three-dimensional topological field theories with defects. This is made explicit for the subclass of Dijkgraaf-Witten topological field theories.



قيم البحث

اقرأ أيضاً

162 - Liang Kong , Ingo Runkel 2008
We consider algebras in a modular tensor category C. If the trace pairing of an algebra A in C is non-degenerate we associate to A a commutative algebra Z(A), called the full centre, in a doubled version of the category C. We prove that two simple al gebras with non-degenerate trace pairing are Morita-equivalent if and only if their full centres are isomorphic as algebras. This result has an interesting interpretation in two-dimensional rational conformal field theory; it implies that there cannot be several incompatible sets of boundary conditions for a given bulk theory.
We give a proof of a formula for the trace of self-braidings (in an arbitrary channel) in UMTCs which first appeared in the context of rational conformal field theories (CFTs). The trace is another invariant for UMTCs which depends only on modular da ta, and contains the expression of the Frobenius-Schur indicator as a special case. Furthermore, we discuss some applications of the trace formula to the realizability problem of modular data and to the classification of UMTCs.
120 - J. Fuchs , C. Schweigert 2001
We study properties of the category of modules of an algebra object A in a tensor category C. We show that the module category inherits various structures from C, provided that A is a Frobenius algebra with certain additional properties. As a by-prod uct we obtain results about the Frobenius-Schur indicator in sovereign tensor categories. A braiding on C is not needed, nor is semisimplicity. We apply our results to the description of boundary conditions in two-dimensional conformal field theory and present illustrative examples. We show that when the module category is tensor, then it gives rise to a NIM-rep of the fusion rules, and discuss a possible relation with the representation theory of vertex operator algebras.
We study fermionic topological phases using the technique of fermion condensation. We give a prescription for performing fermion condensation in bosonic topological phases which contain a fermion. Our approach to fermion condensation can roughly be u nderstood as coupling the parent bosonic topological phase to a phase of physical fermions, and condensing pairs of physical and emergent fermions. There are two distinct types of objects in fermionic theories, which we call m-type and q-type particles. The endomorphism algebras of q-type particles are complex Clifford algebras, and they have no analogues in bosonic theories. We construct a fermionic generalization of the tube category, which allows us to compute the quasiparticle excitations in fermionic topological phases. We then prove a series of results relating data in condensed theories to data in their parent theories; for example, if $mathcal{C}$ is a modular tensor category containing a fermion, then the tube category of the condensed theory satisfies $textbf{Tube}(mathcal{C}/psi) cong mathcal{C} times (mathcal{C}/psi)$. We also study how modular transformations, fusion rules, and coherence relations are modified in the fermionic setting, prove a fermionic version of the Verlinde dimension formula, construct a commuting projector lattice Hamiltonian for fermionic theories, and write down a fermionic version of the Turaev-Viro-Barrett-Westbury state sum. A large portion of this work is devoted to three detailed examples of performing fermion condensation to produce fermionic topological phases: we condense fermions in the Ising theory, the $SO(3)_6$ theory, and the $frac{1}{2}text{E}_6$ theory, and compute the quasiparticle excitation spectrum in each of these examples.
We propose foundations for a synthetic theory of $(infty,1)$-categories within homotopy type theory. We axiomatize a directed interval type, then define higher simplices from it and use them to probe the internal categorical structures of arbitrary t ypes. We define Segal types, in which binary composites exist uniquely up to homotopy; this automatically ensures composition is coherently associative and unital at all dimensions. We define Rezk types, in which the categorical isomorphisms are additionally equivalent to the type-theoretic identities - a local univalence condition. And we define covariant fibrations, which are type families varying functorially over a Segal type, and prove a dependent Yoneda lemma that can be viewed as a directed form of the usual elimination rule for identity types. We conclude by studying homotopically correct adjunctions between Segal types, and showing that for a functor between Rezk types to have an adjoint is a mere proposition. To make the bookkeeping in such proofs manageable, we use a three-layered type theory with shapes, whose contexts are extended by polytopes within directed cubes, which can be abstracted over using extension types that generalize the path-types of cubical type theory. In an appendix, we describe the motivating semantics in the Reedy model structure on bisimplicial sets, in which our Segal and Rezk types correspond to Segal spaces and complete Segal spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا