ترغب بنشر مسار تعليمي؟ اضغط هنا

Excessive Higgs pair production with little MET from squarks and gluinos in the NMSSM

296   0   0.0 ( 0 )
 نشر من قبل Ulrich Ellwanger
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the presence of a light singlino-like LSP in the NMSSM, the missing transverse energy - MET - signature of squark/gluino production can be considerably reduced. Instead, a pair of Higgs bosons is produced in each event. We propose benchmark points for such scenarios, which differ in the squark and gluino masses, and in their decay cascades. Events for these points are simulated for the run II of the LHC at 13 TeV centre of mass energy. After cuts on the transverse momenta of at least four jets, and requiring two tau-leptons from one Higgs decay, we find that the invariant mass of two b-jets from the other Higgs decay shows clear peaks above the background. Despite the reduced MET, this search strategy allows to see signals for sufficiently large integrated luminosities, depending on the squark/gluino masses.

قيم البحث

اقرأ أيضاً

In the framework of the simplest little Higgs model (SLHM), we study the production of a pair of neutral CP-even Higgs bosons at the LHC. First, we examine the production rate and find that it can be significantly larger than the SM prediction. Then we investigate the decays of the Higgs-pair and find that for a low Higgs mass their dominant decay mode is hh->etaetaetaeta (eta is a CP-odd scalar) while hh->bbar{b}etaeta and hh->etaeta WW may also have sizable ratios. Finally, we comparatively study the rates of pp-> hh -> bbar{b}tau^+ tau^-, pp->hh->bbar{b}gammagamma, and pp->hh->WWWW in the SLHM and the littlest Higgs models (LHT). We find that for a light Higgs, compared with the SM predictions, all the three rates can be sizably enhanced in the LHT but severely suppressed in the SLHM; while for an intermediately heavy Higgs, both the LHT and SLHM can enhance sizably the SM predictions.
We analyse the consequences of the little Higgs model for double Higgs boson production at the LHC and for the partial decay width of the Higgs into two photons. In particular, we study the sensitivity of these processes in terms of the parameters of the model. We find that the little Higgs model contributions are proportional to (v/f)^4 and hence do not change significantly either single or double Higgs production at hadron colliders or the partial decay width of the Higgs into two photons as compared to the standard model predictions. However, when interference and mixing effects are properly taken into account these contributions increase to be of the order of (v/f)^2.
60 - G. De Lorenzo 2008
We present preliminary results on a search for squarks and gluinos in proton-antiproton collisions with a center-of-mass energy of 1.96 TeV and based on about 2.0 fb-1 of data collected by the CDF detector in the Tevatron Run II. Events with multiple jets of hadrons and large missing transverse energy in the final state are studied within the framework of minimal supergravity (mSUGRA) and assuming R-parity conservation. The results are compared to Standard Model predictions and limits on gluino and squark masses are extracted. A specific search for the supersymmetric partner of the bottom quark produced from gluino decays is carried out using a sample of events with missing transverse energy and two or more jets, at least one of them b-tagged. Good agreement is found between data and Standard Model predictions, and limits on gluino and sbottom masses are extracted.
We examine the top squark (stop) and gluino reach of the proposed 33 TeV energy upgrade of the Large Hadron Collider (LHC33) in the Minimal Supersymmetric Standard Model (MSSM) with light higgsinos and relatively heavy electroweak gauginos. In our an alysis, we assume that stops decay to higgsinos via ${tilde t}_1 to t {tilde{Z}}_1$, $tilde{t}_1 to ttilde{Z}_2$ and $tilde{t}$$_1 to btilde{W}_1$ with branching fractions in the ratio 1:1:2 (expected if the decay occurs dominantly via the superpotential Yukawa coupling) while gluinos decay via $tilde{g}to ttilde{t}_1$ or via three-body decays to third generation quarks plus higgsinos. These decay patterns are motivated by models of natural supersymmetry where higgsinos are expected to be close in mass to $m_Z$, but gluinos may be as heavy as $5 - 6$ TeV and stops may have masses up to $sim 3 $ TeV. We devise cuts to optimize the signals from stop and gluino pair production at LHC33. We find that experiments at LHC33 should be able to discover stops with $> 5sigma$ significance if $m_{tilde{t}_1} < 2.3 (2.8) [3.2]$ TeV for an integrated luminosity of 0.3 (1)[3] ab$^{-1}$. The corresponding reach for gluinos extends to 5 (5.5) [6] TeV. These results imply that experiments at LHC33 should be able to discover at least one of the stop or gluino pair signals even with an integrated luminosity of 0.3 ab$^{-1}$ for natural SUSY models with no worse than 3% electroweak fine-tuning, and quite likely both gluinos and stops for an integrated luminosity of 3 ab$^{-1}$.
95 - A. Bartl 2010
We study the effect of squark-generation mixing on production and decays of squarks and gluinos at LHC in the Minimal Supersymmetric Standard Model (MSSM). We show that the mixing effects can be very large in a significant range of the squark-generat ion mixing parameters despite the very strong constraints on quark-flavour violation (QFV) from experimental data on B mesons. We find that under favourable conditions the QFV decay branching ratio B(gluino -> c bar{t} (t bar{c}) neutralino_1) can be as large as about 50%, which may lead to significant QFV signals at LHC. We also find that the squark generation mixing can result in a novel multiple-edge (3- or 4-edge) structure in the charm-top quark invariant mass distribution. Further we show that the two lightest up-type squarks ~u_{1,2} can have very large branching ratios for the decays ~u_i -> c neutralino_1 and ~u_i -> t neutralino_1 simultaneously due to the mixing effect, resulting in QFV signals pp -> c bar{t} (t bar{c}) + missing-E_T + X at a significant rate at LHC. These remarkable signatures could provide a powerful test of supersymmetric QFV at LHC and could have an important impact on the search for squarks and gluinos and the determination of the MSSM parameters at LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا