ترغب بنشر مسار تعليمي؟ اضغط هنا

Erratum: Glassy Chimeras Could Be Blind to Quantum Speedup. . . [Phys. Rev. X 4, 021008 (2014)]

70   0   0.0 ( 0 )
 نشر من قبل Helmut Katzgraber
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Erratum to Phys. Rev. X 4, 021008 (2014): The critical exponent associated with the ferromagnetic susceptibility was computed incorrectly. Furthermore, Ising ferromagnets on the Chimera topology have the same universality class as two-dimensional Ising ferromagnets.



قيم البحث

اقرأ أيضاً

We numerically study out-of-equilibrium dynamics in a family of Heisenberg models with $1/r^6$ power-law interactions and positional disorder. Using the semi-classical discrete truncated Wigner approximation (dTWA) method, we investigate the time evo lution of the magnetization and ensemble-averaged single-spin purity for a strongly disordered system after initializing the system in an out-of-equilibrium state. We find that both quantities display robust glassy behavior for almost any value of the anisotropy parameter of the Heisenberg Hamiltonian. Furthermore, a systematic analysis allows us to quantitatively show that, for all the scenarios considered, the stretch power lies close to the one analytically obtained in the Ising limit. This indicates that glassy relaxation behavior occurs widely in disordered quantum spin systems, independent of the particular symmetries and integrability of the Hamiltonian.
133 - L. Deych 2003
In recent paper Cao et al. [Phys. Rev. B {bf 67}, 161101 (R) (2003)] reported an observation of what is the first genuine multi-mode behavior in random lasers. They observed a splitting of a single lasing line into two lines with close frequencies wh en pumping is increased beyond a certain threshold. Here we are pointing out that the qualitative interpretation of these experiments given in that paper is misleading.
We set the formalism to study the way in which the choice of canonical equilibrium initial conditions affect the real-time dynamics of quantum disordered models. We use a path integral formulation on a time contour with real and imaginary time branch es. The factorisation of the time-integration paths usually assumed in field-theoretical studies breaks down due to the averaging over quenched randomness. We derive the set of Schwinger-Dyson dynamical equations that govern the evolution of linear response and correlation functions. The solution of these equations is not straightforward as it needs, as an input, the full imaginary-time (or Matsubara frequency) dependence of the correlation in equilibrium. We check some limiting cases (equilibrium dynamics, classical limit) and we set the stage for the analytic and numerical analysis of quenches in random quantum systems.
We propose that neuromorphic computing can perform quantum operations. Spiking neurons in the active or silent states are connected to the two states of Ising spins. A quantum density matrix is constructed from the expectation values and correlations of the Ising spins. As a step towards quantum computation we show for a two qubit system that quantum gates can be learned as a change of parameters for neural network dynamics. Our proposal for probabilistic computing goes beyond Markov chains, which are based on transition probabilities. Constraints on classical probability distributions relate changes made in one part of the system to other parts, similar to entangled quantum systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا