ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning the electrically evaluated electron Lande g factor in GaAs quantum dots and quantum wells of different well widths

130   0   0.0 ( 0 )
 نشر من قبل Giles Allison
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We evaluate the Lande g factor of electrons in quantum dots (QDs) fabricated from GaAs quantum well (QW) structures of different well width. We first determine the Lande electron g factor of the QWs through resistive detection of electron spin resonance and compare it to the enhanced electron g factor determined from analysis of the magneto-transport. Next, we form laterally defined quantum dots using these quantum wells and extract the electron g factor from analysis of the cotunneling and Kondo effect within the quantum dots. We conclude that the Lande electron g factor of the quantum dot is primarily governed by the electron g factor of the quantum well suggesting that well width is an ideal design parameter for g-factor engineering QDs.

قيم البحث

اقرأ أيضاً

We investigate how the voltage control of the exciton lateral dipole moment induces a transition from singly to doubly connected topology in type II InAs/GaAsSb quantum dots. The latter causes visible Aharonov-Bohm oscillations and a change of the ex citon g-factor which are modulated by the applied bias. The results are explained in the frame of realistic $mathbf{k}cdotmathbf{p}$ and effective Hamiltonian models and could open a venue for new spin quantum memories beyond the InAs/GaAs realm.
We study the effects of magnetic and electric fields on the g-factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rota tions of single spins are driven using electric-dipole spin resonance. The g-factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g-tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the EDSR response, allowing selective single spin control.
88 - D. Kim , W. Sheng , P.J. Poole 2008
Photoluminescence data from single, self-assembled InAs/InP quantum dots in magnetic fields up to 7 T are presented. Exciton g-factors are obtained for dots of varying height, corresponding to ground state emission energies ranging from 780 meV to 11 00 meV. A monotonic increase of the g-factor from -2 to +1.2 is observed as the dot height decreases. The trend is well reproduced by sp3 tight binding calculations, which show that the hole g-factor is sensitive to confinement effects through orbital angular momentum mixing between the light-hole and heavy-hole valence bands. We demonstrate tunability of the exciton g-factor by manipulating the quantum dot dimensions using pyramidal InP nanotemplates.
The effect of an electric field on spin precession in In0.5Ga0.5As/GaAs self-assembled quantum dots is calculated using multiband real-space envelope-function theory. The dependence of the Lande g tensor on electric fields should permit high-frequenc y g tensor modulation resonance, as well as direct, nonresonant electric-field control of the hole spin. Subharmonic resonances have also been found in g tensor modulation resonance of the holes, due to the strong quadratic dependence of components of the hole g tensor on the electric field.
70 - I. A. Yugova 2006
The Zeeman splitting and the underlying value of the g-factor for conduction band electrons in GaAs/Al_xGa_{1-x}As quantum wells have been measured by spin-beat spectroscopy based on a time-resolved Kerr rotation technique. The experimental data are in good agreement with theoretical predictions. The model accurately accounts for the large electron energies above the GaAs conduction band bottom, resulting from the strong quantum confinement. In the tracked range of optical transition energies E from 1.52 to 2.0eV, the electron g-factor along the growth axis follows closely the universal dependence g_||(E)= -0.445 + 3.38(E-1.519)-2.21(E-1.519)^2 (with E measured in eV); and this universality also embraces Al_xGa_{1-x}As alloys. The in-plane g-factor component deviates notably from the universal curve, with the degree of deviation controlled by the structural anisotropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا