ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Observability of Stochastic Complex Networks under the Supervision of Cognitive Dynamic Systems

105   0   0.0 ( 0 )
 نشر من قبل Mehdi Fatemi
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Much has been said about observability in system theory and control; however, it has been recently that observability in complex networks has seriously attracted the attention of researchers. This paper examines the state-of-the-art and discusses some issues raised due to complexity and stochasticity. These unresolved issues call for a new practical methodology. For stochastic systems, a degree of observability may be defined and the observability problem is not a binary (i.e., yes-no) question anymore. Here, we propose to employ a goal-seeking system to play a supervisory role in the network. Hence, improving the degree of observability would be a valid objective for the supervisory system. Towards this goal, the supervisor dynamically optimizes the observation process by reconfiguring the sensory parts in the network. A cognitive dynamic system is suggested as a proper choice for the supervisory system. In this framework, the network itself is viewed as the environment with which the cognitive dynamic system interacts. Computer experiments confirm the potential of the proposed approach for addressing some of the issues raised in networks due to complexity and stochasticity.



قيم البحث

اقرأ أيضاً

The sensitivity (i.e. dynamic response) of complex networked systems has not been well understood, making difficult to predict whether new macroscopic dynamic behavior will emerge even if we know exactly how individual nodes behave and how they are c oupled. Here we build a framework to quantify the sensitivity of complex networked system of coupled dynamic units. We characterize necessary and sufficient conditions for the emergence of new macroscopic dynamic behavior in the thermodynamic limit. We prove that these conditions are satisfied only for architectures with power-law degree distributions. Surprisingly, we find that highly connected nodes (i.e. hubs) only dominate the sensitivity of the network up to certain critical frequency.
Network science have constantly been in the focus of research for the last decade, with considerable advances in the controllability of their structural. However, much less effort has been devoted to study that how to improve the controllability of c omplex networks. In this paper, a new algorithm is proposed to improve the controllability of complex networks by rewiring links regularly which transforms the network structure. Then it is demonstrated that our algorithm is very effective after numerical simulation experiment on typical network models (Erdos-Renyi and scale-free network). We find that our algorithm is mainly determined by the average degree and positive correlation of in-degree and out-degree of network and it has nothing to do with the network size. Furthermore, we analyze and discuss the correlation between controllability of complex networks and degree distribution index: power-law exponent and heterogeneity
The ability to control a complex network towards a desired behavior relies on our understanding of the complex nature of these social and technological networks. The existence of numerous control schemes in a network promotes us to wonder: what is th e underlying relationship of all possible input nodes? Here we introduce input graph, a simple geometry that reveals the complex relationship between all control schemes and input nodes. We prove that the node adjacent to an input node in the input graph will appear in another control scheme, and the connected nodes in input graph have the same type in control, which they are either all possible input nodes or not. Furthermore, we find that the giant components emerge in the input graphs of many real networks, which provides a clear topological explanation of bifurcation phenomenon emerging in dense networks and promotes us to design an efficient method to alter the node type in control. The findings provide an insight into control principles of complex networks and offer a general mechanism to design a suitable control scheme for different purposes.
Observabililty is an important topic of Boolean control networks (BCNs). In this paper, we propose a new type of observability named online observability to present the sufficient and necessary condition of determining the initial states of BCNs, whe n their initial states cannot be reset. And we design an algorithm to decide whether a BCN has the online observability. Moreover, we prove that a BCN is identifiable iff it satisfies controllability and the online observability, which reveals the essence of identification problem of BCNs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا