ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear structure aspects of spin-independent WIMP scattering off xenon

97   0   0.0 ( 0 )
 نشر من قبل Philipp Klos
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the structure factors for spin-independent WIMP scattering off xenon based on state-of-the-art large-scale shell-model calculations, which are shown to yield a good spectroscopic description of all experimentally relevant isotopes. Our results are based on the leading scalar one-body currents only. At this level and for the momentum transfers relevant to direct dark matter detection, the structure factors are in very good agreement with the phenomenological Helm form factors used to give experimental limits for WIMP-nucleon cross sections. In contrast to spin-dependent WIMP scattering, the spin-independent channel, at the one-body level, is less sensitive to nuclear structure details. In addition, we explicitly show that the structure factors for inelastic scattering are suppressed by ~ 10^{-4} compared to the coherent elastic scattering response. This implies that the detection of inelastic scattering will be able to discriminate clearly between spin-independent and spin-dependent scattering. Finally, we provide fits for all calculated structure factors.

قيم البحث

اقرأ أيضاً

368 - P. Klos , J. Menendez , D. Gazit 2013
We perform state-of-the-art large-scale shell-model calculations of the structure factors for elastic spin-dependent WIMP scattering off 129,131Xe, 127I, 73Ge, 19F, 23Na, 27Al, and 29Si. This comprehensive survey covers the non-zero-spin nuclei relev ant to direct dark matter detection. We include a pedagogical presentation of the formalism necessary to describe elastic and inelastic WIMP-nucleus scattering. The valence spaces and nuclear interactions employed have been previously used in nuclear structure calculations for these mass regions and yield a good spectroscopic description of these isotopes. We use spin-dependent WIMP-nucleus currents based on chiral effective field theory (EFT) at the one-body level and including the leading long-range two-body currents due to pion exchange, which are predicted in chiral EFT. Results for all structure factors are provided with theoretical error bands due to the nuclear uncertainties of WIMP currents in nuclei.
We present nuclear structure factors that describe the generalized spin-independent coupling of weakly interacting massive particles (WIMPs) to nuclei. Our results are based on state-of-the-art nuclear structure calculations using the large-scale nuc lear shell model. Starting from quark- and gluon-level operators, we consider all possible coherently enhanced couplings of spin-1/2 and spin-0 WIMPs to one and two nucleons up to third order in chiral effective field theory. This includes a comprehensive discussion of the structure factors corresponding to the leading two-nucleon currents covering, for the first time, the contribution of spin-2 operators. We provide results for the most relevant nuclear targets considered in present and planned dark matter direct detection experiments: fluorine, silicon, argon, and germanium, complementing our previous work on xenon. All results are also publicly available in a Python notebook.
We present the first constraints on the spin-dependent, inelastic scattering cross section of Weakly Interacting Massive Particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64$times$10$^3$,kg,day. XENON100 is a dual-phase xenon tim e projection chamber with 62,kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of $^{129}$Xe is induced. The experimental signature is a nuclear recoil observed together with the prompt de-excitation photon. We see no evidence for such inelastic WIMP-$^{129}$Xe interactions. A profile likelihood analysis allows us to set a 90% C.L. upper limit on the inelastic, spin-dependent WIMP-nucleon cross section of $3.3 times 10^{-38}$,cm$^{2}$ at 100,GeV/c$^2$. This is the most constraining result to date, and sets the pathway for an analysis of this interaction channel in upcoming, larger dual-phase xenon detectors.
We propose a formalism for the analysis of direct-detection dark-matter searches that covers all coherent responses for scalar and vector interactions and incorporates QCD constraints imposed by chiral symmetry, including all one- and two-body WIMP-n ucleon interactions up to third order in chiral effective field theory. One of the free parameters in the WIMP-nucleus cross section corresponds to standard spin-independent searches, but in general different combinations of new-physics couplings are probed. We identify the interference with the isovector counterpart of the standard spin-independent response and two-body currents as the dominant corrections to the leading spin-independent structure factor, and discuss the general consequences for the interpretation of direct-detection experiments, including minimal extensions of the standard spin-independent analysis. Fits for all structure factors required for the scattering off xenon targets are provided based on state-of-the-art nuclear shell-model calculations.
Chiral effective field theory (EFT) provides a systematic expansion for the coupling of WIMPs to nucleons at the momentum transfers relevant to direct cold dark matter detection. We derive the currents for spin-dependent WIMP scattering off nuclei at the one-body level and include the leading long-range two-body currents, which are predicted in chiral EFT. As an application, we calculate the structure factor for spin-dependent WIMP scattering off 129,131Xe nuclei, using nuclear interactions that have been developed to study nuclear structure and double-beta decays in this region. We provide theoretical error bands due to the nuclear uncertainties of WIMP currents in nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا