ترغب بنشر مسار تعليمي؟ اضغط هنا

Invited review: Clogging of granular materials in bottlenecks

182   0   0.0 ( 0 )
 نشر من قبل Iker Zuriguel
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Iker Zuriguel




اسأل ChatGPT حول البحث

During the past decades, notable improvements have been achieved in the understanding of static and dynamic properties of granular materials, giving rise to appealing new concepts like jamming, force chains, non-local rheology or the inertial number. The `saltcellar can be seen as a canonical example of the characteristic features displayed by granular materials: an apparently smooth flow is interrupted by the formation of a mesoscopic structure (arch) above the outlet that causes a quick dissipation of all the kinetic energy within the system. In this manuscript, I will give an overview of this field paying special attention to the features of statistical distributions appearing in the clogging and unclogging processes. These distributions are essential to understand the problem and allow subsequent study of topics such as the influence of particle shape, the structure of the clogging arches and the possible existence of a critical outlet size above which the outpouring will never stop. I shall finally offer some hints about general ideas that can be explored in the next few years.



قيم البحث

اقرأ أيضاً

We propose a theoretical framework to calculate capillary stresses in complex mesoporous materials, such as moist sand, nanoporous hydrates, and drying colloidal films. Molecular simulations are mapped onto a phase-field model of the liquid-vapor mix ture, whose inhomogeneous stress tensor is integrated over Voronoi polyhedra in order to calculate equal and opposite forces between each pair of neighboring grains. The method is illustrated by simulations of moisture-induced forces in small clusters and random packings of spherical grains using lattice-gas Density Functional Theory. For a nano-granular model of cement hydrates, this approach reproduces the hysteretic water sorption/desorption isotherms and predicts drying shrinkage strain isotherm in good agreement with experiments. We show that capillary stress is an effective mechanism for internal stress relaxation in colloidal random packings, which contributes to the extraordinary durability of cement paste.
Granular flow in a silo demonstrates multiple nonlocal rheological phenomena due to the finite size of grains. We solve the Nonlocal Granular Fluidity (NGF) continuum model in quasi-2D silo geometries and evaluate its ability to predict these nonloca l effects, including flow spreading and, importantly, clogging (arrest) when the opening is small enough. The model is augmented to include a free-separation criterion and is implemented numerically with an extension of the trans-phase granular flow solver described in arXiv:1411.5447, to produce full-field solutions. The implementation is validated against analytical results of the model in the inclined chute geometry, such as the solution for the $H_{mathrm{stop}}$ curve for size-dependent flow arrest, and the velocity profile as a function of layer height. We then implement the model in the silo geometry and vary the apparent grain size. The model predicts a jamming criterion when the opening competes with the scale of the mean grain size, which agrees with previous experimental studies, marking the first time to our knowledge that silo jamming has been achieved with a continuum model. For larger openings, the flow within the silo obtains a diffusive characteristic whose spread depends on the models nonlocal amplitude and the mean grain size. The numerical tests are controlled for grid effects and a comparison study of coarse vs refined numerical simulations shows agreement in the pressure field, the shape of the arch in a jammed silo configuration, and the velocity field in a flowing configuration.
We measure the drag encountered by a vertically oriented rod moving across a sedimented granular bed immersed in a fluid under steady-state conditions. At low rod speeds, the presence of the fluid leads to a lower drag because of buoyancy, whereas a significantly higher drag is observed with increasing speeds. The drag as a function of depth is observed to decrease from being quadratic at low speeds to appearing more linear at higher speeds. By scaling the drag with the average weight of the grains acting on the rod, we obtain the effective friction $mu_e$ encountered over six orders of magnitude of speeds. While a constant $mu_e$ is found when the grain size, rod depth and fluid viscosity are varied at low speeds, a systematic increase is observed as the speed is increased. We analyze $mu_e$ in terms of the inertial number $I$ and viscous number $J$ to understand the relative importance of inertia and viscous forces, respectively. For sufficiently large fluid viscosities, we find that the effect of varying the speed, depth, and viscosity can be described by the empirical function $mu_e = mu_o + k J^n$, where $mu_o$ is the effective friction measured in the quasi-static limit, and $k$ and $n$ are material constants. The drag is then analyzed in terms of the effective viscosity $eta_e$ and found to decrease systematically as a function of $J$. We further show that $eta_e$ as a function of $J$ is directly proportional to the fluid viscosity and the $mu_e$ encountered by the rod.
Granular fronts are a common yet unexplained phenomenon emerging during the gravity driven free-surface flow of concentrated suspensions. They are usually believed to be the result of fluid convection in combination with particle size segregation. Ho wever, suspensions composed of uniformly sized particles also develop a granular front. Within a large rotating drum, a stationary recirculating avalanche is generated. The flowing material is a mixture of a visco-plastic fluid obtained from a kaolin-water dispersion, with spherical ceramic particles denser than the fluid. The goal is to mimic the composition of many common granular-fluid materials, like fresh concrete or debris flow. In these materials, granular and fluid phases have the natural tendency to segregate due to particle settling. However, through the shearing caused by the rotation of the drum, a reorganization of the phases is induced, leading to the formation of a granular front. By tuning the material properties and the drum velocity, it is possible to control this phenomenon. The setting is reproduced in a numerical environment, where the fluid is solved by a Lattice-Boltzmann Method, and the particles are explicitly represented using the Discrete Element Method. The simulations confirm the findings of the experiments, and provide insight into the internal mechanisms. Comparing the time-scale of particle settling with the one of particle recirculation, a non-dimensional number is defined, and is found to be effective in predicting the formation of a granular front.
Due to the potential impact on the diagnosis and treatment of various cardiovascular diseases, work on the rheology of blood has significantly expanded in the last decade, both experimentally and theoretically. Experimentally, blood has been confirme d to demonstrate a variety of non-Newtonian rheological characteristics, including pseudoplasticity, viscoelasticity, and thixotropy. New rheological experiments and the development of more controlled experimental protocols on more extensive, broadly physiologically characterized, human blood samples demonstrate the sensitivity of aspects of hemorheology to several physiological factors. For example, at high shear rates to the red blood cells elastically deformation, imparting viscoelasticity, while and at low shear rates, they form rouleaux structures that impart additional, thixotropic behavior. In addition to these advances in experimental methods and validated data sets, significant advances have also been made in both microscopic simulations and macroscopic, continuum, modeling, as well as novel, multiscale approaches. We outline and evaluate the most promising of these recent advances. Although we primarily focus on human blood rheology, we also discuss recent observations on variations across some animal species that provide some indication on evolutionary effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا