ﻻ يوجد ملخص باللغة العربية
During the past decades, notable improvements have been achieved in the understanding of static and dynamic properties of granular materials, giving rise to appealing new concepts like jamming, force chains, non-local rheology or the inertial number. The `saltcellar can be seen as a canonical example of the characteristic features displayed by granular materials: an apparently smooth flow is interrupted by the formation of a mesoscopic structure (arch) above the outlet that causes a quick dissipation of all the kinetic energy within the system. In this manuscript, I will give an overview of this field paying special attention to the features of statistical distributions appearing in the clogging and unclogging processes. These distributions are essential to understand the problem and allow subsequent study of topics such as the influence of particle shape, the structure of the clogging arches and the possible existence of a critical outlet size above which the outpouring will never stop. I shall finally offer some hints about general ideas that can be explored in the next few years.
We propose a theoretical framework to calculate capillary stresses in complex mesoporous materials, such as moist sand, nanoporous hydrates, and drying colloidal films. Molecular simulations are mapped onto a phase-field model of the liquid-vapor mix
Granular flow in a silo demonstrates multiple nonlocal rheological phenomena due to the finite size of grains. We solve the Nonlocal Granular Fluidity (NGF) continuum model in quasi-2D silo geometries and evaluate its ability to predict these nonloca
We measure the drag encountered by a vertically oriented rod moving across a sedimented granular bed immersed in a fluid under steady-state conditions. At low rod speeds, the presence of the fluid leads to a lower drag because of buoyancy, whereas a
Granular fronts are a common yet unexplained phenomenon emerging during the gravity driven free-surface flow of concentrated suspensions. They are usually believed to be the result of fluid convection in combination with particle size segregation. Ho
Due to the potential impact on the diagnosis and treatment of various cardiovascular diseases, work on the rheology of blood has significantly expanded in the last decade, both experimentally and theoretically. Experimentally, blood has been confirme