ترغب بنشر مسار تعليمي؟ اضغط هنا

Doppler Spectroscopy of an Ytterbium Bose-Einstein Condensate on the Clock Transition

72   0   0.0 ( 0 )
 نشر من قبل Fabrice Gerbier
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe Doppler spectroscopy of Bose-Einstein condensates of ytterbium atoms using a narrow optical transition. We address the optical clock transition around 578 nm between the ${^1}S_0$ and ${^3}P_0$ states with a laser system locked on a high-finesse cavity. We show how the absolute frequency of the cavity modes can be determined within a few tens of kHz using high-resolution spectroscopy on molecular iodine. We show that optical spectra reflect the velocity distribution of expanding condensates in free fall or after releasing them inside an optical waveguide. We demonstrate sub-kHz spectral linewidths, with long-term drifts of the resonance frequency well below 1 kHz/hour. These results open the way to high-resolution spectroscopy of many-body systems.

قيم البحث

اقرأ أيضاً

We study the metastability and decay of multiply-charged superflow in a ring-shaped atomic Bose-Einstein condensate. Supercurrent corresponding to a giant vortex with topological charge up to q=10 is phase-imprinted optically and detected both interf erometrically and kinematically. We observe q=3 superflow persisting for up to a minute and clearly resolve a cascade of quantised steps in its decay. These stochastic decay events, associated with vortex-induced $2 pi$ phase slips, correspond to collective jumps of atoms between discrete q values. We demonstrate the ability to detect quantised rotational states with > 99 % fidelity, which allows a detailed quantitative study of time-resolved phase-slip dynamics. We find that the supercurrent decays rapidly if the superflow speed exceeds a critical velocity in good agreement with numerical simulations, and we also observe rare stochastic phase slips for superflow speeds below the critical velocity.
We have measured the quantum depletion of an interacting homogeneous Bose-Einstein condensate, and confirmed the 70-year old theory of N.N. Bogoliubov. The observed condensate depletion is reversibly tuneable by changing the strength of the interpart icle interactions. Our atomic homogeneous condensate is produced in an optical-box trap, the interactions are tuned via a magnetic Feshbach resonance, and the condensed fraction probed by coherent two-photon Bragg scattering.
The presence of strong interactions in a many-body quantum system can lead to a variety of exotic effects. Here we show that even in a comparatively simple setup consisting of a charged impurity in a weakly interacting bosonic medium the competition of length scales gives rise to a highly correlated mesoscopic state. Using quantum Monte Carlo simulations, we unravel its vastly different polaronic properties compared to neutral quantum impurities. Moreover, we identify a transition between the regime amenable to conventional perturbative treatment in the limit of weak atom-ion interactions and a many-body bound state with vanishing quasi-particle residue composed of hundreds of atoms. In order to analyze the structure of the corresponding states we examine the atom-ion and atom-atom correlation functions which both show nontrivial properties. Our findings are directly relevant to experiments using hybrid atom-ion setups that have recently attained the ultracold regime.
Zitterbewegung, a force-free trembling motion first predicted for relativistic fermions like electrons, was an unexpected consequence of the Dirac equations unification of quantum mechanics and special relativity. Though the oscillatory motions large frequency and small amplitude have precluded its measurement with electrons, zitterbewegung is observable via quantum simulation. We engineered an environment for 87Rb Bose-Einstein condensates where the constituent atoms behaved like relativistic particles subject to the one-dimensional Dirac equation. With direct imaging, we observed the sub-micrometer trembling motion of these clouds, demonstrating the utility of neutral ultracold quantum gases for simulating Dirac particles.
We present a novel cavity QED system in which a Bose-Einstein condensate (BEC) is trapped within a high-finesse optical cavity whose length may be adjusted to access both single-mode and multimode configurations. We demonstrate the coupling of an ato mic ensemble to the cavity in both configurations. The atoms are confined either within an intracavity far-off-resonance optical dipole trap (FORT) or a crossed optical dipole trap via transversely oriented lasers. Multimode cavity QED provides fully emergent and dynamical optical lattices for intracavity BECs. Such systems will enable explorations of quantum soft matter, including superfluid smectics, superfluid glasses, and spin glasses as well as neuromorphic associative memory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا