ترغب بنشر مسار تعليمي؟ اضغط هنا

FlexDM: Enabling robust and reliable parallel data mining using WEKA

194   0   0.0 ( 0 )
 نشر من قبل David Budden
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Performing massive data mining experiments with multiple datasets and methods is a common task faced by most bioinformatics and computational biology laboratories. WEKA is a machine learning package designed to facilitate this task by providing tools that allow researchers to select from several classification methods and specific test strategies. Despite its popularity, the current WEKA environment for batch experiments, namely Experimenter, has four limitations that impact its usability: the selection of value ranges for methods options lacks flexibility and is not intuitive; there is no support for parallelisation when running large-scale data mining tasks; the XML schema is difficult to read, necessitating the use of the Experimenters graphical user interface for generation and modification; and robustness is limited by the fact that results are not saved until the last test has concluded. FlexDM implements an interface to WEKA to run batch processing tasks in a simple and intuitive way. In a short and easy-to-understand XML file, one can define hundreds of tests to be performed on several datasets. FlexDM also allows those tests to be executed asynchronously in parallel to take advantage of multi-core processors, significantly increasing usability and productivity. Results are saved incrementally for better robustness and reliability. FlexDM is implemented in Java and runs on Windows, Linux and OSX. As we encourage other researchers to explore and adopt our software, FlexDM is made available as a pre-configured bootable reference environment. All code, supporting documentation and usage examples are also available for download at http://sourceforge.net/projects/flexdm.


قيم البحث

اقرأ أيضاً

Data processing pipelines represent an important slice of the astronomical software library that include chains of processes that transform raw data into valuable information via data reduction and analysis. In this work we present Corral, a Python f ramework for astronomical pipeline generation. Corral features a Model-View-Controller design pattern on top of an SQL Relational Database capable of handling: custom data models; processing stages; and communication alerts, and also provides automatic quality and structural metrics based on unit testing. The Model-View-Controller provides concept separation between the user logic and the data models, delivering at the same time multi-processing and distributed computing capabilities. Corral represents an improvement over commonly found data processing pipelines in Astronomy since the design pattern eases the programmer from dealing with processing flow and parallelization issues, allowing them to focus on the specific algorithms needed for the successive data transformations and at the same time provides a broad measure of quality over the created pipeline. Corral and working examples of pipelines that use it are available to the community at https://github.com/toros-astro.
We introduce a task-parallel algorithm for sparse incomplete Cholesky factorization that utilizes a 2D sparse partitioned-block layout of a matrix. Our factorization algorithm follows the idea of algorithms-by-blocks by using the block layout. The al gorithm-by-blocks approach induces a task graph for the factorization. These tasks are inter-related to each other through their data dependences in the factorization algorithm. To process the tasks on various manycore architectures in a portable manner, we also present a portable tasking API that incorporates different tasking backends and device-specific features using an open-source framework for manycore platforms i.e., Kokkos. A performance evaluation is presented on both Intel Sandybridge and Xeon Phi platforms for matrices from the University of Florida sparse matrix collection to illustrate merits of the proposed task-based factorization. Experimental results demonstrate that our task-parallel implementation delivers about 26.6x speedup (geometric mean) over single-threaded incomplete Cholesky-by-blocks and 19.2x speedup over serial Cholesky performance which does not carry tasking overhead using 56 threads on the Intel Xeon Phi processor for sparse matrices arising from various application problems.
Hydra is a header-only, templated and C++11-compliant framework designed to perform the typical bottleneck calculations found in common HEP data analyses on massively parallel platforms. The framework is implemented on top of the C++11 Standard Libra ry and a variadic version of the Thrust library and is designed to run on Linux systems, using OpenMP, CUDA and TBB enabled devices. This contribution summarizes the main features of Hydra. A basic description of the overall design, functionality and user interface is provided, along with some code examples and measurements of performance.
Our goal is compression of massive-scale grid-structured data, such as the multi-terabyte output of a high-fidelity computational simulation. For such data sets, we have developed a new software package called TuckerMPI, a parallel C++/MPI software p ackage for compressing distributed data. The approach is based on treating the data as a tensor, i.e., a multidimensional array, and computing its truncated Tucker decomposition, a higher-order analogue to the truncated singular value decomposition of a matrix. The result is a low-rank approximation of the original tensor-structured data. Compression efficiency is achieved by detecting latent global structure within the data, which we contrast to most compression methods that are focused on local structure. In this work, we describe TuckerMPI, our implementation of the truncated Tucker decomposition, including details of the data distribution and in-memory layouts, the parallel and serial implementations of the key kernels, and analysis of the storage, communication, and computational costs. We test the software on 4.5 terabyte and 6.7 terabyte data sets distributed across 100s of nodes (1000s of MPI processes), achieving compression rates between 100-200,000$times$ which equates to 99-99.999% compression (depending on the desired accuracy) in substantially less time than it would take to even read the same dataset from a parallel filesystem. Moreover, we show that our method also allows for reconstruction of partial or down-sampled data on a single node, without a parallel computer so long as the reconstructed portion is small enough to fit on a single machine, e.g., in the instance of reconstructing/visualizing a single down-sampled time step or computing summary statistics.
In this work, we collect data from runs of Krylov subspace methods and pipelined Krylov algorithms in an effort to understand and model the impact of machine noise and other sources of variability on performance. We find large variability of Krylov i terations between compute nodes for standard methods that is reduced in pipelined algorithms, directly supporting conjecture, as well as large variation between statistical distributions of runtimes across iterations. Based on these results, we improve upon a previously introduced nondeterministic performance model by allowing iterations to fluctuate over time. We present our data from runs of various Krylov algorithms across multiple platforms as well as our updated non-stationary model that provides good agreement with observations. We also suggest how it can be used as a predictive tool.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا