ﻻ يوجد ملخص باللغة العربية
We study experimentally gravity-driven granular discharges of laboratory scale silos, during the initial instants of the discharge. We investigate deformable wall silos around their critical collapse height, as well as rigid wall silos. We propose a criterion to determine a maximum time for the onset of the collapse and find that the onset of collapse always occurs before the grains adjacent to the wall are sliding down. We conclude that the evolution of the static friction toward a state of maximum mobilization plays a crucial role in the collapse of the silo.
We study the flow of elongated grains (wooden pegs of length $L$=20 mm with circular cross section of diameter $d_c$=6 and 8 mm) from a silo with a rotating bottom and a circular orifice of diameter $D$. In the small orifice range ($D/d<5$) clogs are
We investigate, at a laboratory scale, the collapse of cylindrical shells of radius $R$ and thickness $t$ induced by a granular discharge. We measure the critical filling height for which the structure fails upon discharge. We observe that the silos
We present experimental data corresponding to a two dimensional dense granular flow, namely, the gravity-driven discharge of grains from a small opening in a silo. We study the microscopic velocity field with the help of particle tracking techniques.
We use Topological Data Analysis to study the post buckling behavior of laboratory scale cylindrical silos under gravity driven granular discharges. Thin walled silos buckle during the discharge if the initial height of the granular column is large e
What cosmic ray ionisation rate is required such that a non-ideal magnetohydrodynamics (MHD) simulation of a collapsing molecular cloud will follow the same evolutionary path as an ideal MHD simulation or as a purely hydrodynamics simulation? To inve