ﻻ يوجد ملخص باللغة العربية
Using the thermodynamic Bethe ansatz, we investigate the topological Kondo model, which describes a set of one-dimensional external wires, pertinently coupled to a central region hosting a set of Majorana bound states. After a short review of the Bethe ansatz solution, we study the system at finite temperature and derive its free energy for arbitrary (even and odd) number of external wires. We then analyse the ground state energy as a function of the number of external wires and of their couplings to the Majorana bound states. Then, we compute, both for small and large temperatures, the entropy of the Majorana degrees of freedom localized within the central region and connected to the external wires. Our exact computation of the impurity entropy provides evidence of the importance of fermion parity symmetry in the realization of the topological Kondo model. Finally, we also obtain the low-temperature behaviour of the specific heat of the Majorana bound states, which provides a signature of the non-Fermi-liquid nature of the strongly coupled fixed point.
We introduce and study a simplification of the symmetric single-impurity Kondo model. In the Ising-Kondo model, host electrons scatter off a single magnetic impurity at the origin whose spin orientation is dynamically conserved. This reduces the prob
We propose to use residual parafermions of the overscreened Kondo effect for topological quantum computation. A superconducting proximity gap of $Delta<T_K$ can be utilized to isolate the parafermion from the continuum of excitations and stabilize th
Conduction electrons coupled to a mesoscopic superconducting island hosting Majorana bound states have been shown to display a topological Kondo effect with robust non-Fermi liquid correlations. With $M$ bound states coupled to $M$ leads, this is an
Temperature dependence of the electronic structure of SmB6 is studied by high-resolution ARPES down to 1 K. We demonstrate that there is no essential difference for the dispersions of the surface states below and above the resistivity saturating anom
The Kondo insulator compound SmB6 has emerged as a strong candidate for the realization of a topologically nontrivial state in a strongly correlated system, a topological Kondo insulator, which can be a novel platform for investigating the interplay