ﻻ يوجد ملخص باللغة العربية
Plasmonics aims to interface photonics and electronics. Finding optical, near-field analogues of much used electro-technical components is crucial to the success of such a platform. Here we present the plasmonic analogue of a non-reciprocal antenna. For non-reciprocality in a plasmonic context, the optical excitation and emission resonances of the antenna need to be an orthogonal set. We show that nonlinear excitation of metal nanoantennas creates a sufficient shift between excitation and emission wavelengths that they can be interpreted as decoupled, allowing for independent tuning of excitation and emission properties along different spatial dimensions. This leads, for given excitation wavelength and polarization, to independent optimization of emission intensity, frequency spectrum, polarization and angular spectrum. Non-reciprocal optical antennas of both gold and aluminum are characterized and shown to be useful as e.g. nonlinear signal transducers or nanoscale sources of widely tunable light.
The origin and properties of the transverse non-reciprocal magneto-optical (nMO) effect were studied. The transverse nMO effect occurs in the case when light propagates perpendicularly to the magnetic field. It was demonstrated that light can experie
The design of nano-antennas is so far mainly inspired by radio-frequency technology. However, material properties and experimental settings need to be reconsidered at optical frequencies, which entails the need for alternative optimal antenna designs
Recent progress in nanotechnology has enabled us to fabricate subwavelength architectures that function as antennas for improving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing qu
The emission rate of a point dipole can be strongly increased in presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring e.g.~ohmic losses and non-negligible field penetration in me
Analog computing has emerged as a promising candidate for real-time and parallel continuous data processing. This paper presents a reciprocal way for realizing asymmetric optical transfer functions (OTFs) in the reflection side of the on-axis process