ترغب بنشر مسار تعليمي؟ اضغط هنا

The DarkLight Experiment: A Precision Search for New Physics at Low Energies

82   0   0.0 ( 0 )
 نشر من قبل Richard Milner
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the current status of the DarkLight experiment at Jefferson Laboratory. DarkLight is motivated by the possibility that a dark photon in the mass range 10 to 100 MeV/c$^2$ could couple the dark sector to the Standard Model. DarkLight will precisely measure electron proton scattering using the 100 MeV electron beam of intensity 5 mA at the Jefferson Laboratory energy recovering linac incident on a windowless gas target of molecular hydrogen. The complete final state including scattered electron, recoil proton, and e+e- pair will be detected. A phase-I experiment has been funded and is expected to take data in the next eighteen months. The complete phase-II experiment is under final design and could run within two years after phase-I is completed. The DarkLight experiment drives development of new technology for beam, target, and detector and provides a new means to carry out electron scattering experiments at low momentum transfers.

قيم البحث

اقرأ أيضاً

66 - J. Balewski 2013
We give a short overview of the DarkLight detector concept which is designed to search for a heavy photon A with a mass in the range 10 MeV/c^2 < m(A) < 90 MeV/c^2 and which decays to lepton pairs. We describe the intended operating environment, the Jefferson Laboratory free electon laser, and a way to extend DarkLights reach using A --> invisible decays.
We propose a new precision measurement of parity-violating electron scattering on the proton at very low Q^2 and forward angles to challenge predictions of the Standard Model and search for new physics. A unique opportunity exists to carry out the fi rst precision measurement of the protons weak charge, $Q_W =1 - 4sin^2theta_W$. A 2200 hour measurement of the parity violating asymmetry in elastic ep scattering at Q^2=0.03 (GeV/c)^2 employing 180 $mu$A of 85% polarized beam on a 35 cm liquid Hydrogen target will determine the protons weak charge with approximately 4% combined statistical and systematic errors. The Standard Model makes a firm prediction of $Q_W$, based on the running of the weak mixing angle from the Z0 pole down to low energies, corresponding to a 10 sigma effect in this experiment.
229 - B. Blank , P. Ascher , M. Gerbaux 2020
Following work done in the energy region above 100 keV, the high-precision calibration of a co-axial high-purity germanium detector has been continued in the energy region below 100 keV. Previous measurements or Monte-Carlo simulations have been repe ated with higher statistics and new source measurements have been added. A precision as in the high-energy part, i.e. an absolute precision for the detection efficiency of 0.2%, has been reached. The low-energy behaviour of the germanium detector was further scrutinized by studying the germanium X-ray escape probability for the detection of low-energy photons. In addition, one experimental point, a gamma ray at 2168 keV from the decay of 38K, has been included for the total-to-peak ratios agreeing well with simulations. The same gamma ray was also added for the single- and double-escape probabilities. Finally, the long term stability of the efficiency of the germanium detector was investigated by regularly measuring the full-energy peak efficiency with a precisely calibrated 60Co source and found to be perfectly stable over a period of 10 years.
FASER is a proposed small and inexpensive experiment designed to search for light, weakly-interacting particles during Run 3 of the LHC from 2021-23. Such particles may be produced in large numbers along the beam collision axis, travel for hundreds o f meters without interacting, and then decay to standard model particles. To search for such events, FASER will be located 480 m downstream of the ATLAS IP in the unused service tunnel TI12 and be sensitive to particles that decay in a cylindrical volume with radius R=10 cm and length L=1.5 m. FASER will complement the LHCs existing physics program, extending its discovery potential to a host of new, light particles, with potentially far-reaching implications for particle physics and cosmology. This document describes the technical details of the FASER detector components: the magnets, the tracker, the scintillator system, and the calorimeter, as well as the trigger and readout system. The preparatory work that is needed to install and operate the detector, including civil engineering, transport, and integration with various services is also presented. The information presented includes preliminary cost estimates for the detector components and the infrastructure work, as well as a timeline for the design, construction, and installation of the experiment.
105 - Jae Hyeok Yoo 2018
Recently, a search for milli-charged particles produced at the LHC has been proposed. The experiment, named milliQan, is expected to obtain sensitivity to charges of $10^{- 1} - 10^{-3}e$ for masses in the 0.1 - 100 GeV range. The detector is compose d of 3 stacks of 80 cm long plastic scintillator arrays read out by PMTs. It will be installed in an existing tunnel 33 m from the CMS interaction point at the LHC, with 17 m of rock shielding to suppress beam backgrounds. In the fall of 2017 a 1% scale demonstrator of the proposed detector was installed at the planned site in order to study the feasibility of the experiment, focusing on understanding various background sources such as radioactivity of materials, PMT dark current, cosmic rays, and beam induced backgrounds. The data from the demonstrator provides a unique opportunity to understand the backgrounds and to optimize the design of the full detector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا