ﻻ يوجد ملخص باللغة العربية
The Large Electron Multipliers (LEMs) are key components of double phase liquid argon TPCs. The drifting charges after being extracted from the liquid are amplified in the LEM positioned half a centimeter above the liquid in pure argon vapor at 87 K. The LEM is characterised by the size of its dielectric rim around the holes, the thickness of the LEM insulator, the diameter of the holes as well as their geometrical layout. The impact of those design parameters on the amplification were checked by testing seven different LEMs with an active area of 10$times$10 cm$^2$ in a double phase liquid argon TPC of 21 cm drift. We studied their response in terms of maximal reachable gain and impact on the collected charge uniformity as well as the long term stability of the gain. We show that we could reach maximal gains of around 150 which corresponds to a signal-to-noise ratio ($S/N$) of about 800 for a minimal ionising particle (MIP) signal on 3 mm readout strips. We could also conclude that the dielectric surfaces in the vicinity of the LEM holes charge up with different time constants that depend on their design parameters. Our results demonstrate that the LAr LEM TPC is a robust concept that is well-understood and well-suited for operation in ultra-pure cryogenic environments and that can match the goals of future large-scale liquid argon detectors.
In this paper we give a thorough description of a liquid argon time projection chamber designed, built and operated at Yale. We present results from a calibration run where cosmic rays have been observed in the detector, a first in the US.
This manuscript describes the commissioning of the Mini-CAPTAIN liquid argon detector in a neutron beam at the Los Alamos Neutron Science Center (LANSCE), which led to a first measurement of high-energy neutron interactions in argon. The Mini-CAPTAIN
In this paper we present results from a test of a small Liquid Argon Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC). This detector concept provides a 3D-tracking and calorimetric device capable of charge amplification, suited for nex
This paper describes the design, realization and operation of a prototype liquid Argon Time Projection Chamber (LAr TPC) detector dedicated to the development of a novel online monitoring and calibration system exploiting UV laser beams. In particula
Finding unambiguous evidence of dark matter interactions in a particle detector is a main objective of physics research. The liquid argon time projection chamber technique for the detection of Weakly Interacting Massive Particles (WIMP) allows sensit