ﻻ يوجد ملخص باللغة العربية
A projective Reed-Muller (PRM) code, obtained by modifying a (classical) Reed-Muller code with respect to a projective space, is a doubly extended Reed-Solomon code when the dimension of the related projective space is equal to 1. The minimum distance and dual code of a PRM code are known, and some decoding examples have been represented for low-dimensional projective space. In this study, we construct a decoding algorithm for all PRM codes by dividing a projective space into a union of affine spaces. In addition, we determine the computational complexity and the number of errors correctable of our algorithm. Finally, we compare the codeword error rate of our algorithm with that of minimum distance decoding.
The notion of a Private Information Retrieval (PIR) code was recently introduced by Fazeli, Vardy and Yaakobi who showed that this class of codes permit PIR at reduced levels of storage overhead in comparison with replicated-server PIR. In the presen
Projective Reed-Muller codes were introduced by Lachaud, in 1988 and their dimension and minimum distance were determined by Serre and S{o}rensen in 1991. In coding theory one is also interested in the higher Hamming weights, to study the code perfor
In this paper we present several values for the next-to-minimal weights of projective Reed-Muller codes. We work over $mathbb{F}_q$ with $q geq 3$ since in IEEE-IT 62(11) p. 6300-6303 (2016) we have determined the complete values for the next-to-mini
This paper presents a novel successive factor-graph permutation (SFP) scheme that significantly improves the error-correction performance of Reed-Muller (RM) codes under successive-cancellation list (SCL) decoding. In particular, we perform maximum-l
A low-complexity tree search approach is presented that achieves the maximum-likelihood (ML) decoding performance of Reed-Muller (RM) codes. The proposed approach generates a bit-flipping tree that is traversed to find the ML decoding result by perfo