ﻻ يوجد ملخص باللغة العربية
We apply the Nonequilibrium Greens Function (NEGF) formalism to the problem of a multi-terminal nanojunction subject to an arbitrary time-dependent bias. In particular, we show that taking a generic one-particle system Hamiltonian within the wide band limit approximation (WBLA), it is possible to obtain a closed analytical expression for the current in each lead. Our formula reduces to the well-known result of Jauho et. al. [doi:10.1103/PhysRevB.50.5528] in the limit where the switch-on time is taken to the remote past, and to the result of Tuovinen et. al. [doi:10.1088/1742-6596/427/1/012014] when the bias is maintained at a constant value after the switch-on. As we use a partition-free approach, our formula contains both the long-time current and transient effects due to the sudden switch-on of the bias. Numerical calculations performed for the simple case of a single-level quantum dot coupled to two leads are performed for a sinusoidally-varying bias. At certain frequencies of the driving bias, we observe `ringing oscillations of the current, whose dependence on the dot level, level width, oscillation amplitude and temperature is also investigated.
We study the differential conductance in the Kondo regime of a quantum dot coupled to multiple leads. When the bias is applied symmetrically on two of the leads ($V$ and $-V$, as usual in experiments), while the others are grounded, the conductance t
Working within the Nonequilibrium Greens Function (NEGF) formalism, a formula for the two-time current correlation function is derived for the case of transport through a nanojunction in response to an arbitrary time-dependent bias. The one-particle
Recently [Phys. Rev. B 91, 125433 (2015)] we derived a general formula for the time-dependent quantum electron current through a molecular junction subject to an arbitrary time-dependent bias within the Wide Band Limit Approximation (WBLA) and assumi
We show that smooth variations, delta n({bf r}), of the local electron concentration in a clean 2D electron gas give rise to a zero-bias anomaly in the tunnel density of states, u(omega), even in the absence of scatterers, and thus, without the Frie
In recent years there has been an increasing interest in nanomachines. Among them, current-driven ones deserve special attention as quantum effects can play a significant role there. Examples of the latter are the so-called adiabatic quantum motors.