ترغب بنشر مسار تعليمي؟ اضغط هنا

Manifold Matching using Shortest-Path Distance and Joint Neighborhood Selection

115   0   0.0 ( 0 )
 نشر من قبل Cencheng Shen
 تاريخ النشر 2014
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Matching datasets of multiple modalities has become an important task in data analysis. Existing methods often rely on the embedding and transformation of each single modality without utilizing any correspondence information, which often results in sub-optimal matching performance. In this paper, we propose a nonlinear manifold matching algorithm using shortest-path distance and joint neighborhood selection. Specifically, a joint nearest-neighbor graph is built for all modalities. Then the shortest-path distance within each modality is calculated from the joint neighborhood graph, followed by embedding into and matching in a common low-dimensional Euclidean space. Compared to existing algorithms, our approach exhibits superior performance for matching disparate datasets of multiple modalities.



قيم البحث

اقرأ أيضاً

Computing shortest path distances between nodes lies at the heart of many graph algorithms and applications. Traditional exact methods such as breadth-first-search (BFS) do not scale up to contemporary, rapidly evolving todays massive networks. There fore, it is required to find approximation methods to enable scalable graph processing with a significant speedup. In this paper, we utilize vector embeddings learnt by deep learning techniques to approximate the shortest paths distances in large graphs. We show that a feedforward neural network fed with embeddings can approximate distances with relatively low distortion error. The suggested method is evaluated on the Facebook, BlogCatalog, Youtube and Flickr social networks.
Computing the shortest path between two given locations in a road network is an important problem that finds applications in various map services and commercial navigation products. The state-of-the-art solutions for the problem can be divided into t wo categories: spatial-coherence-based methods and vertex-importance-based approaches. The two categories of techniques, however, have not been compared systematically under the same experimental framework, as they were developed from two independent lines of research that do not refer to each other. This renders it difficult for a practitioner to decide which technique should be adopted for a specific application. Furthermore, the experimental evaluation of the existing techniques, as presented in previous work, falls short in several aspects. Some methods were tested only on small road networks with up to one hundred thousand vertices; some approaches were evaluated using distance queries (instead of shortest path queries), namely, queries that ask only for the length of the shortest path; a state-of-the-art technique was examined based on a faulty implementation that led to incorrect query results. To address the above issues, this paper presents a comprehensive comparison of the most advanced spatial-coherence-based and vertex-importance-based approaches. Using a variety of real road networks with up to twenty million vertices, we evaluated each technique in terms of its preprocessing time, space consumption, and query efficiency (for both shortest path and distance queries). Our experimental results reveal the characteristics of different techniques, based on which we provide guidelines on selecting appropriate methods for various scenarios.
Given two locations $s$ and $t$ in a road network, a distance query returns the minimum network distance from $s$ to $t$, while a shortest path query computes the actual route that achieves the minimum distance. These two types of queries find import ant applications in practice, and a plethora of solutions have been proposed in past few decades. The existing solutions, however, are optimized for either practical or asymptotic performance, but not both. In particular, the techniques with enhanced practical efficiency are mostly heuristic-based, and they offer unattractive worst-case guarantees in terms of space and time. On the other hand, the methods that are worst-case efficient often entail prohibitive preprocessing or space overheads, which render them inapplicable for the large road networks (with millions of nodes) commonly used in modern map applications. This paper presents {em Arterial Hierarchy (AH)}, an index structure that narrows the gap between theory and practice in answering shortest path and distance queries on road networks. On the theoretical side, we show that, under a realistic assumption, AH answers any distance query in $tilde{O}(log r)$ time, where $r = d_{max}/d_{min}$, and $d_{max}$ (resp. $d_{min}$) is the largest (resp. smallest) $L_infty$ distance between any two nodes in the road network. In addition, any shortest path query can be answered in $tilde{O}(k + log r)$ time, where $k$ is the number of nodes on the shortest path. On the practical side, we experimentally evaluate AH on a large set of real road networks with up to twenty million nodes, and we demonstrate that (i) AH outperforms the state of the art in terms of query time, and (ii) its space and pre-computation overheads are moderate.
80 - Mengxuan Zhang , Lei Li , Wen Hua 2019
Finding the shortest paths in road network is an important query in our life nowadays, and various index structures are constructed to speed up the query answering. However, these indexes can hardly work in real-life scenario because the traffic cond ition changes dynamically, which makes the pathfinding slower than in the static environment. In order to speed up path query answering in the dynamic road network, we propose a framework to support these indexes. Firstly, we view the dynamic graph as a series of static snapshots. After that, we propose two kinds of methods to select the typical snapshots. The first kind is time-based and it only considers the temporal information. The second category is the graph representation-based, which considers more insights: edge-based that captures the road continuity, and vertex-based that reflects the region traffic fluctuation. Finally, we propose the snapshot matching to find the most similar typical snapshot for the current traffic condition and use its index to answer the query directly. Extensive experiments on real-life road network and traffic conditions validate the effectiveness of our approach.
144 - Ziyi Liu , Lei Li , Mengxuan Zhang 2021
The textit{Multi-Constraint Shortest Path (MCSP)} problem aims to find the shortest path between two nodes in a network subject to a given constraint set. It is typically processed as a textit{skyline path} problem. However, the number of intermediat e skyline paths becomes larger as the network size increases and the constraint number grows, which brings about the dramatical growth of computational cost and further makes the existing index-based methods hardly capable of obtaining the complete exact results. In this paper, we propose a novel high-dimensional skyline path concatenation method to avoid the expensive skyline path search, which then supports the efficient construction of hop labeling index for textit{MCSP} queries. Specifically, a set of insightful observations and techniques are proposed to improve the efficiency of concatenating two skyline path set, a textit{n-Cube} technique is designed to prune the concatenation space among multiple hops, and a textit{constraint pruning} method is used to avoid the unnecessary computation. Furthermore, to scale up to larger networks, we propose a novel textit{forest hop labeling} which enables the parallel label construction from different network partitions. Our approach is the first method that can achieve both accuracy and efficiency for textit{MCSP} query answering. Extensive experiments on real-life road networks demonstrate the superiority of our method over the state-of-the-art solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا