ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetism of BaFe2Se3 studied by Mossbauer spectroscopy

120   0   0.0 ( 0 )
 نشر من قبل Krzysztof Ruebenbauer
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The compound BaFe2Se3 (Pnma) has been synthesized in the form of single crystals with the average composition Ba0.992Fe1.998Se3. The Moessbauer spectroscopy used for investigation of the valence states of Fe in this compound at temperature ranging from 4.2 K till room temperature revealed the occurrence of mixed-valence state for iron. The spectrum is characterized by sharply defined electric quadrupole doublet above magnetic ordering at about 250 K. For the magnetically ordered state one sees four iron sites at least and each of them is described by separate axially symmetric electric field gradient tensor with the principal component making some angle with the hyperfine magnetic field. They form two groups occurring in equal abundances. It is likely that each group belongs to separate spin ladder with various tilts of the FeSe4 tetrahedral units along the ladder. Two impurity phases are found, i.e., superconducting FeSe and some other unidentified iron-bearing phase being magnetically disordered above 80 K. Powder form of BaFe2Se3 is unstable in contact with the air and decomposes slowly to this unidentified phase exhibiting almost the same quadrupole doublet as BaFe2Se3 above magnetic transition temperature.



قيم البحث

اقرأ أيضاً

The Fe(1+x)Sb compound has been synthesized close to stoichiometry with x = 0.023(8). The compound was investigated by 57Fe Mossbauer spectroscopy in the temperature range 4.2 - 300 K. The antiferromagnetic ordering temperature was found as 232 K i.e . much higher than for the less stoichiometric material. Regular iron was found to occupy two different positions in proportion 2:1. They differ by the electric quadrupole coupling constants and both of them exhibit extremely anisotropic electric field gradient tensor (EFG) with the asymmetry parameter equal one. The negative component of both EFGs is aligned with the c-axis of the hexagonal unit cell, while the positive component is aligned with the <120> direction. Hence, a model describing deviation from the NiAs P63/mmc symmetry group within Fe-planes has been proposed. Spectra in the magnetically ordered state could be explained by introduction of the incommensurate spin spirals propagating through the iron atoms in the direction of the c-axis with a complex pattern of the hyperfine magnetic fields distributed within a-b plane. Hyperfine magnetic field pattern of spirals due to major regular iron is smoothed by the spin polarized itinerant electrons, while the minor regular iron exhibits hyperfine field pattern characteristic of the highly covalent bonds to the adjacent antimony atoms. The excess interstitial iron orders magnetically at the same temperature as the regular iron, and magnetic moments of these atoms are likely to form two-dimensional spin glass with moments lying in the a-b plane. The upturn of the hyperfine field for minor regular iron and interstitial iron is observed below 80 K. Magneto-elastic effects are smaller than for FeAs, however the recoilless fraction increases significantly upon transition to the magnetically ordered state.
Magnetism in the insulating BaFe$_2$Se$_3$ was examined through susceptibility, specific heat, resistivity and neutron diffraction measurements. After formation of a short-range magnetic correlation, a long-range ordering was observed below $T_{rm N} sim 255$ K. The transition is obscured by bulk properties. Magnetic moments ($parallel a$) are arranged to form a Fe$_4$ ferromagnetic unit, and each Fe$_4$ stacks antiferromagnetically. This block magnetism is of the third type among magnetic structures of ferrous materials. The magnetic ordering drives unusually large distortion via magnetoelastic coupling.
The magnetic ordering of the hexagonal multiferroic compound YbMnO$_3$ has been studied between 100 K and 1.5 K by combining neutron powder diffraction, $^{170}$Yb Mossbauer spectroscopy and magnetization measurements. The Yb moments of the two cryst allographic sites order at two different temperatures, the $4b$ site together with the Mn moments (at $T_N simeq$85 K) and the $2a$ site well below (at 3.5 K). The temperature dependences of the Mn and Yb moments are explained within a molecular field model, showing that the $4b$ and $2a$ sites order via Yb-Mn and Yb-Yb interactions respectively. A simple picture taking into account the local Mn environment of the Rare earth R ($4b$) ion is proposed to couple R and Mn orders in hexagonal RMnO$_3$ manganites. The nature and symmetry of the R-Mn interactions yielding the R order are discussed.
The localized-to-itinerant transition of f electrons lies at the heart of heavy-fermion physics, but has only been directly observed in single-layer Ce-based materials. Here, we report a comprehensive study on the electronic structure and nature of t he Ce 4f electrons in the heavy-fermion superconductor Ce2PdIn8, a typical n=2 CenMmIn3n+2m compound, using high-resolution and 4d-4f resonance photoemission spectroscopies. The electronic structure of this material has been studied over a wide temperature range, and hybridization between f and conduction electrons can be clearly observed to form a Kondo resonance near the Fermi level at low temperatures. The characteristic temperature of the localized-to-itinerant transition is around 120K, which is much higher than its coherence temperature Tcoh~30K.
We systemically investigate the nature of Ce 4f electrons in structurally layered heavy-fermion compounds CcmMnIn3m+2n (with M =Co, Rh, Ir, and Pt, m=l, 2, n=0 - 2), at low temperature using on-resonance angle-resolved photoemission spectroscopy. Thr ee heavy quasiparticle bands f^0, f^1_7/2 and f^1_5/2 are observed in all compounds, but their intensities and energy locations vary greatly with materials. The strong f^0 states imply that the localized electron behavior dominates the Ce 4f states. The Ce 4f electrons are partially hybridized with the conduction electrons, making them have the dual nature of localization and itinerant. Our quantitative comparison reveals that the f^1_5/2 / f^0 intensity ratio is more suitable to reflect the 4f-state hybridization strength.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا