ترغب بنشر مسار تعليمي؟ اضغط هنا

LOFAR Observations of Swift J1644+57 and Implications for Short-Duration Transients

87   0   0.0 ( 0 )
 نشر من قبل Yvette Cendes
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims: We have analyzed low frequency radio data of tidal disruption event (TDE) Swift J1644+57 to search for a counterpart. We consider how brief transient signals (on the order of seconds or minutes) originating from this location would appear in our data. We also consider how automatic radio frequency interference (RFI) flagging at radio telescope observatories might affect these and other transient observations in the future, particularly with brief transients of a few seconds duration. Methods: We observed the field in the low-frequency regime at 149 MHz with data obtained over several months with the Low Frequency Array (LOFAR). We also present simulations where a brief transient is injected into the data in order to see how it would appear in our measurement sets, and how it would be affected by RFI flagging. Finally, both based on simulation work and the weighted average of the observed background over the course of the individual observations, we present the possibility of brief radio transients in the data. Results: Our observations of Swift J1644+57 yielded no detection of the source and a peak flux density at this position of 24.7 $pm$ 8.9 mJy. Our upper limit on the transient rate of the snapshot surface density in this field at sensitivities < 0.5 Jy is $rho < 2.2 times10^{-2}$ deg$^{-2}$. We also conclude that we did not observe any brief transient signals originating specifically from the Swift J1644+57 source itself, and searches for such transients are severely limited by automatic RFI flagging algorithms which flag transients of less than 2 minutes duration. As such, careful consideration of RFI flagging techniques must occur when searching for transient signals.

قيم البحث

اقرأ أيضاً

With their wide fields of view and often relatively long coverage of any position in the sky in imaging survey mode, modern radio telescopes provide a data stream that is naturally suited to searching for rare transients. However, Radio Frequency Int erference (RFI) can show up in the data stream in similar ways to such transients, and thus the normal pre-treatment of filtering RFI (flagging) may also remove astrophysical transients from the data stream before imaging. In this paper we investigate how standard flagging affects the detectability of such transients by examining the case of transient detection in an observing mode used for Low Frequency Array (LOFAR; citep{LOFAR}) surveys. We quantify the fluence range of transients that would be detected, and the reduction of their SNR due to partial flagging. We find that transients with a duration close to the integration sampling time, as well as bright transients with durations on the order of tens of seconds, are completely flagged. For longer transients on the order of several tens of seconds to minutes, the flagging effects are not as severe, although part of the signal is lost. For these transients, we present a modified flagging strategy which mitigates the effect of flagging on transient signals. We also present a script which uses the differences between the two strategies, and known differences between transient RFI and astrophysical transients, to notify the observer when a potential transient is in the data stream.
125 - Y. C. Zou 2013
The X-ray emission from Swift J1644+57 is not steadily decreasing instead it shows multiple pulses with declining amplitudes. We model the pulses as reverse shocks from collisions between the late ejected shells and the externally shocked material, w hich is decelerated while sweeping the ambient medium. The peak of each pulse is taken as the maximum emission of each reverse shock. With a proper set of parameters, the envelope of peaks in the light curve as well as the spectrum can be modelled nicely.
An estimate of the jet inclination angle relative to the accreting black holes spin can be useful to probe the jet triggering mechanism and the disc--jet coupling. A Tidal Disruption Event (TDE) of a star by a supermassive spinning black hole provide s an excellent astrophysical laboratory to study the jet direction through the possibility of jet precession. In this work, we report a new method to constrain the jet inclination angle $beta$ and apply it to the well-sampled jetted TDE Swift J1644+57. This method involves X-ray data analysis and comparisons of jet models with broad properties of the observed X-ray dips, to estimate the upper limit of the extent of the contribution of a plausible jet precession to these X-ray dips. From this limit, we find that $beta$ is very likely to be less than $sim 15^circ$ for Swift J1644+57. Such a well-constrained jet inclination angle could be useful to probe the jet physics. The main advantage of our method is that it does not need to assume an origin of the observed X-ray dips, and the conclusion does not depend on any particular type of jet precession (e.g., the one due to the Lense-Thirring effect) or any specific value of precession frequency or any particular jet model. These make this method reliable and applicable to other jetted TDEs, as well as to other jetted accreting systems.
Reflections from objects in Earth orbit can produce sub-second, star-like optical flashes similar to astrophysical transients. Reflections have historically caused false alarms for transient surveys, but the population has not been systematically stu died. We report event rates for these orbital flashes using the Evryscope Fast Transient Engine, a low-latency transient detection pipeline for the Evryscopes. We select single-epoch detections likely caused by Earth satellites and model the event rate as a function of both magnitude and sky position. We measure a rate of $1800^{+600}_{-280}$ sky$^{-1}$ hour$^{-1}$, peaking at $m_g = 13.0$, for flashes morphologically degenerate with real astrophysical signals in surveys like the Evryscopes. Of these, $340^{+150}_{-85}$ sky$^{-1}$ hour$^{-1}$ are bright enough to be visible to the naked eye in typical suburban skies with a visual limiting magnitude of $Vapprox4$. These measurements place the event rate of orbital flashes orders of magnitude higher than the combined rate of public alerts from all active all-sky fast-timescale transient searches, including neutrino, gravitational-wave, gamma-ray, and radio observatories. Short-timescale orbital flashes form a dominating foreground for un-triggered searches for fast transients in low-resolution, wide-angle surveys. However, events like fast radio bursts (FRBs) with arcminute-scale localization have a low probability ($sim10^{-5}$) of coincidence with an orbital flash, allowing optical surveys to place constraints on their potential optical counterparts in single images. Upcoming satellite internet constellations, like SpaceX Starlink, are unlikely to contribute significantly to the population of orbital flashes in normal operations.
The tidal disruption event by a supermassive black hole in Swift J1644+57 can trigger limit-cycle oscillations between a supercritically accreting X-ray bright state and a subcritically accreting X-ray dim state. Time evolution of the debris gas arou nd a black hole with mass $M=10^{6} {MO}$ is studied by performing axisymmetric, two-dimensional radiation hydrodynamic simulations. We assumed the $alpha$-prescription of viscosity, in which the viscous stress is proportional to the total pressure. The mass supply rate from the outer boundary is assumed to be ${dot M}_{rm supply}=100L_{rm Edd}/c^2$, where $L_{rm Edd}$ is the Eddington luminosity, and $c$ is the light speed. Since the mass accretion rate decreases inward by outflows driven by radiation pressure, the state transition from a supercritically accreting slim disk state to a subcritically accreting Shakura-Sunyaev disk starts from the inner disk and propagates outward in a timescale of a day. The sudden drop of the X-ray flux observed in Swift J1644+57 in August 2012 can be explained by this transition. As long as ${dot M}_{rm supply}$ exceeds the threshold for the existence of a radiation pressure dominant disk, accumulation of the accreting gas in the subcritically accreting region triggers the transition from a gas pressure dominant Shakura-Sunyaev disk to a slim disk. This transition takes place at $t {sim}~50/({alpha}/0.1)$ days after the X-ray darkening. We expect that if $alpha > 0.01$, X-ray emission with luminosity $gtrsim 10^{44}$ ${rm erg}{cdot}{rm s}^{-1}$ and jet ejection will revive in Swift J1644+57 in 2013--2014.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا