ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining Very High Mass Population III Stars through He II Emission in Galaxy BDF-521 at z = 7.01

133   0   0.0 ( 0 )
 نشر من قبل Zheng Cai
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Numerous theoretical models have long proposed that a strong He II 1640 emission line is the most prominent and unique feature of massive Population III (Pop III) stars in high redshift galaxies. The He II 1640 line strength can constrain the mass and IMF of Pop III stars. We use F132N narrowband filter on the Hubble Space Telescopes (HST) Wide Field Camera 3 (WFC3) to look for strong He II lambda 1640 emission in the galaxy BDF-521 at z=7.01, one of the most distant spectroscopically-confirmed galaxies to date. Using deep F132N narrowband imaging, together with our broadband imaging with F125W and F160W filters, we do not detect He II emission from this galaxy, but place a 2-sigma upper limit on the flux of 5.3x10^-19 ergs s^-1 cm^-2. This measurement corresponds to a 2-sigma upper limit on the Pop III star formation rate (SFR_PopIII) of ~ 0.2 M_solar yr^-1, assuming a Salpeter IMF with 50< M/M_solar < 1000. From the high signal-to-noise broadband measurements in F125W and F160W, we fit the UV continuum for BDF-521. The spectral flux density is ~ 3.6x 10^-11 lambda^-2.32 ergs s^-1 cm^-2 A^-1, which corresponds to an overall unobscured SFR of ~ 5 M_solar yr^-1. Our upper limit on SFR_PopIII suggests that massive Pop III stars represent < 4% of the total star formation. Further, the HST high resolution imaging suggests that BDF-521 is an extremely compact galaxy, with a half-light radius of 0.6 kpc.

قيم البحث

اقرأ أيضاً

We study the number and the distribution of low mass Pop III stars in the Milky Way. In our numerical model, hierarchical formation of dark matter minihalos and Milky Way sized halos are followed by a high resolution cosmological simulation. We model the Pop III formation in H2 cooling minihalos without metal under UV radiation of the Lyman-Werner bands. Assuming a Kroupa IMF from 0.15 to 1.0 Msun for low mass Pop III stars, as a working hypothesis, we try to constrain the theoretical models in reverse by current and future observations. We find that the survivors tend to concentrate on the center of halo and subhalos. We also evaluate the observability of Pop III survivors in the Milky Way and dwarf galaxies, and constraints on the number of Pop III survivors per minihalo. The higher latitude fields require lower sample sizes because of the high number density of stars in the galactic disk, the required sample sizes are comparable in the high and middle latitude fields by photometrically selecting low metallicity stars with optimized narrow band filters, and the required number of dwarf galaxies to find one Pop III survivor is less than ten at <100 kpc for the tip of redgiant stars. Provided that available observations have not detected any survivors, the formation models of low mass Pop III stars with more than ten stars per minihalo are already excluded. Furthermore, we discuss the way to constrain the IMF of Pop III star at a high mass range of > 10 Msun.
We report the discovery of the first spectroscopically resolved C II /C II* 1334, 1335A doublet in the Lyman-break galaxy J0215-0555 at z = 5.754. The separation of the resonant and fluorescent emission channels was possible thanks to the large redsh ift of the source and long integration time, as well as the small velocity width of the feature, 0.6 +- 0.2A. We model this emission and find that at least two components are required to reproduce the combination of morphologies of C II* emission, C II absorption and emission, and Lyman-alpha emission from the object. We suggest that the close alignment between the fluorescence and Lyman-alpha emission could indicate an ionisation escape channel within the object. While the faintness of such a C II /C II* doublet makes it prohibitively difficult to pursue for similar systems with current facilities, we suggest it can become a valuable porosity diagnostic in the era of JWST and the upcoming generations of ELTs.
187 - Ke-Jung Chen 2014
Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 Msun die as highly energetic pair-in stability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core collapse, to capture any dynamical instabilities that may be seeded by collapse and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell $sim$ 20 - 100 seconds after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh--Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta.
We report on our ongoing investigation into the nucleosynthetic and hydrodynamic nature of mixing at the interface between the H- and He-convection zones in massive Pop III stars. Studying a grid of 26 1D stellar evolution simulations with different mixing assumptions, we find that H-He interactions occur in 23/26 cases. We demonstrate the nucleosynthesis expected in a H-He interaction in an 80M$_odot$. Finally, we describe our progress in simulating a Pop III double convection zone in the PPMStar hydrodynamics code.
Extremely metal-poor stars are uniquely informative on the nature of massive Population III stars. Modulo a few elements that vary with stellar evolution, the present-day photospheric abundances observed in extremely metal-poor stars are representati ve of their natal gas cloud composition. For this reason, the chemistry of extremely metal-poor stars closely reflects the nucleosynthetic yields of supernovae from massive Population III stars. Here we collate detailed abundances of 53 extremely metal-poor stars from the literature and infer the masses of their Population III progenitors. We fit a simple initial mass function to a subset of 29 of theinferred Population III star masses, and find that the mass distribution is well-represented by a power law IMF with exponent $alpha = 2.35^{+0.29}_{-0.24}$. The inferred maximum progenitor mass for supernovae from massive Population III stars is $M_{rm{max}} = 87^{+13}_{-33}$ M$_odot$, and we find no evidence in our sample for a contribution from stars with masses above $sim$120 M$_odot$. The minimum mass is strongly consistent with the theoretical lower mass limit for Population III supernovae. We conclude that the IMF for massive Population III stars is consistent with the initial mass function of present-day massive stars and there may well have formed stars much below the supernova mass limit that could have survived to the present day.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا