ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneous CP violation and the strong CP problem

142   0   0.0 ( 0 )
 نشر من قبل Luca Vecchi
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Luca Vecchi




اسأل ChatGPT حول البحث

We derive sufficient conditions that guarantee a robust solution of the strong CP problem in theories with spontaneous CP violation, and introduce a class of models satisfying these requirements. In the simplest scenarios the dominant contribution to the topological angle arises at 3-loop order in the Yukawa couplings. A variety of realizations are possible on a warped extra dimension, which can simultaneously address the Planck-TeV hierarchy. Experimental signatures of this approach to the strong CP problem include flavor violation and vector-like partners of the top or bottom quarks.



قيم البحث

اقرأ أيضاً

Current upper bounds of the neutron electric dipole moment constrain the physically observable quantum chromodynamic (QCD) vacuum angle $|bartheta| lesssim 10^{-11}$. Since QCD explains vast experimental data from the 100 MeV scale to the TeV scale, it is better to explain this smallness of $|bartheta|$ in the QCD framework, which is the strong CaPa problem. Now, there exist two plausible solutions to this problem, one of which leads to the existence of the very light axion. The axion decay constant window, $10^9 {gev}lesssim F_alesssim 10^{12} gev$ for a ${cal O}(1)$ initial misalignment angle $theta_1$, has been obtained by astrophysical and cosmological data. For $F_agtrsim 10^{12}$ GeV with $theta_1<{cal O}(1)$, axions may constitute a significant fraction of dark matter of the universe. The supersymmetrized axion solution of the strong CaPa problem introduces its superpartner the axino which might have affected the universe evolution significantly. Here, we review the very light axion (theory, supersymmetrization, and models) with the most recent particle, astrophysical and cosmological data, and present prospects for its discovery.
The existence in the physical QCD vacuum of nonzero gluon condensates, such as $<g^2F^2>$, requires dominance of gluon fields with finite mean action density. This naturally allows any real number value for the unit ``topological charge $q$ character ising the fields approximating the gluon configurations which should dominate the QCD partition function. If $q$ is an irrational number then the critical values of the $theta$ parameter for which CP is spontaneously broken are dense in $mathbb{R}$, which provides for a mechanism of resolving the strong CP problem simultaneously with a correct implementation of $U_{rm A}(1)$ symmetry. We present an explicit realisation of this mechanism within a QCD motivated domain model. Some model independent arguments are given that suggest the relevance of this mechanism also to genuine QCD.
128 - Ulrich Nierste , Mustafa Tabet , 2019
Decades of precision measurements have firmly established the Kobayashi-Maskawa phase as the dominant source of the CP violation observed in weak quark decays. However, it is still unclear whether CP violation is explicitly encoded in complex Yukawa matrices or instead stems from spontaneous symmetry breaking with underlying CP-conserving Yukawa and Higgs sectors. Here we study the latter possibility for the case of a generic two-Higgs-doublet model. We find that theoretical constraints limit the ratio $t_beta$ of the vacuum expectation values to the range $0.22 leq t_beta leq 4.5$ and imply the upper bounds $M_{H^pm}leq 435$ GeV, $M_{H_{2}^0} leq 485$ GeV and $M_{H_{3}^0} leq 545$ GeV for the charged and extra neutral Higgs masses. We derive lower bounds on charged-Higgs couplings to bottom quarks which provide a strong motivation to study the non-standard production and decay signatures $p p to qb H^pm(to q^prime b)$ with all flavors $q,q^prime=u,c,t$ in the search for the charged Higgs boson. We further present a few benchmark scenarios with interesting discovery potential in collider analyses.
We propose simple scoto-seesaw models to account for dark matter and neutrino masses with spontaneous CP violation. This is achieved with a single horizontal $mathcal{Z}_8$ discrete symmetry, broken to a residual $mathcal{Z}_2$ subgroup responsible f or stabilizing dark matter. CP is broken spontaneously via the complex vacuum expectation value of a scalar singlet, inducing leptonic CP-violating effects. We find that the imposed $mathcal{Z}_8$ symmetry pushes the values of the Dirac CP phase and the lightest neutrino mass to ranges already probed by ongoing experiments, so that normal-ordered neutrino masses can be cornered by cosmological observations and neutrinoless double beta decay experiments.
Three possibilities for the origin of CP violation are discussed: (1) the Standard Model in which all CP violation is due to one parameter in the CKM matrix, (2) the superweak model in which all CP violation is due to new physics and (3) the Standard Model plus new physics. A major goal of B physics is to distinguish these possibilities. CP violation implies time reversal violation (TRV) but direct evidence for TRV is difficult to obtain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا