ﻻ يوجد ملخص باللغة العربية
There are steady advances in the calculation of electroweak corrections to massive scattering problems at colliders, from the very beginning in the nineteen seventies until contemporary developments. Recent years brought a remarkable progress due to new calculational technologies. This was motivated by demands from phenomenological applications at particle accelerators: higher multiplicities of the final states, extreme kinematics, need of higher precision and thus of higher orders in perturbation theory. We describe selected contributions from the project Massive particle production of Sonderforschungsbereich/Transregio 9 of Deutsche Forschungsgemeinschaft.
A method for reducing Feynman integrals, depending on several kinematic variables and masses, to a combination of integrals with fewer variables is proposed. The method is based on iterative application of functional equations proposed by the author.
A new approach to compute Feynman Integrals is presented. It relies on an integral representation of a given Feynman Integral in terms of simpler ones. Using this approach, we present, for the first time, results for a certain family of non-planar fi
Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations. These lectures give a review of these developments, while not assuming any prior knowledge of the subject. Aft
We develop a general framework for the evaluation of $d$-dimensional cut Feynman integrals based on the Baikov-Lee representation of purely-virtual Feynman integrals. We implement the generalized Cutkosky cutting rule using Cauchys residue theorem an
We report on the progress in constructing contracted one-loop tensors. Analytic results for rank R=4 tensors, cross-checked numerically, are presented for the first time.