ترغب بنشر مسار تعليمي؟ اضغط هنا

Lindbladians for controlled stochastic Hamiltonians

38   0   0.0 ( 0 )
 نشر من قبل Alex Retzker
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct Lindbladians associated with controlled stochastic Hamiltonians in weak coupling. This allows to determine the power spectrum of the noise from measurements of dephasing rates; to optimize the control and to test numerical algorithms that solve controlled stochastic Schrodinger equations. A few examples are worked out in detail.

قيم البحث

اقرأ أيضاً

We show that the complex projections of time-dependent $eta $-quasianti-Hermitian quaternionic Hamiltonian dynamics are complex stochastic dynamics in the space of complex quasi-Hermitian density matrices if and only if a quasistationarity condition is fulfilled, i. e., if and only if $eta $ is an Hermitian positive time-independent complex operator. An example is also discussed.
We introduce a method for the search of parent Hamiltonians of input wave-functions based on the structure of their reduced density matrix. The two key elements of our recipe are an ansatz on the relation between reduced density matrix and parent Ham iltonian that is exact at the field theory level, and a minimization procedure on the space of relative entropies, which is particularly convenient due to its convexity. As examples, we show how our method correctly reconstructs the parent Hamiltonian correspondent to several non-trivial ground state wave functions, including conformal and symmetry-protected-topological phases, and quantum critical points of two-dimensional antiferromagnets described by strongly coupled field theories. Our results show the entanglement structure of ground state wave-functions considerably simplifies the search for parent Hamiltonians.
The validity of optimized dynamical decoupling (DD) is extended to analytically time dependent Hamiltonians. As long as an expansion in time is possible the time dependence of the initial Hamiltonian does not affect the efficiency of optimized dynami cal decoupling (UDD, Uhrig DD). This extension provides the analytic basis for (i) applying UDD to effective Hamiltonians in time dependent reference frames, for instance in the interaction picture of fast modes and for (ii) its application in hierarchical DD schemes with $pi$ pulses about two perpendicular axes in spin space. to suppress general decoherence, i.e., longitudinal relaxation and dephasing.
Quantum fluctuations driven by non-stoquastic Hamiltonians have been conjectured to be an important and perhaps essential missing ingredient for achieving a quantum advantage with adiabatic optimization. We introduce a transformation that maps every non-stoquastic adiabatic path ending in a classical Hamiltonian to a corresponding stoquastic adiabatic path by appropriately adjusting the phase of each matrix entry in the computational basis. We compare the spectral gaps of these adiabatic paths and find both theoretically and numerically that the paths based on non-stoquastic Hamiltonians have generically smaller spectral gaps between the ground and first excited states, suggesting they are less useful than stoquastic Hamiltonians for quantum adiabatic optimization. These results apply to any adiabatic algorithm which interpolates to a final Hamiltonian that is diagonal in the computational basis.
Given a generic time-dependent many-body quantum state, we determine the associated parent Hamiltonian. This procedure may require, in general, interactions of any sort. Enforcing the requirement of a fixed set of engineerable Hamiltonians, we find t he optimal Hamiltonian once a set of realistic elementary interactions is defined. We provide three examples of this approach. We first apply the optimization protocol to the ground states of the one-dimensional Ising model and a ferromagnetic $p$-spin model but with time-dependent coefficients. We also consider a time-dependent state that interpolates between a product state and the ground state of a $p$-spin model. We determine the time-dependent optimal parent Hamiltonian for these states and analyze the capability of this Hamiltonian of generating the state evolution. Finally, we discuss the connections of our approach to shortcuts to adiabaticity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا