ترغب بنشر مسار تعليمي؟ اضغط هنا

Bilinear Backlund transformations and Lax pair for the Boussinesq equation

120   0   0.0 ( 0 )
 نشر من قبل Yongqiang Bai
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hirotas bilinear approach is a very effective method to construct solutions for soliton systems. In terms of this method, the nonlinear equations can be transformed into linear equations, and can be solved by using perturbation method. In this paper, we study the bilinear Boussinesq equation and obtain its bilinear B{a}cklund transformation. Starting from this bilinear B{a}cklund transformation, we also derive its Lax pair and test its integrability.



قيم البحث

اقرأ أيضاً

We construct Backlund transformations (BTs) for the Kirchhoff top by taking advantage of the common algebraic Poisson structure between this system and the $sl(2)$ trigonometric Gaudin model. Our BTs are integrable maps providing an exact time-discre tization of the system, inasmuch as they preserve both its Poisson structure and its invariants. Moreover, in some special cases we are able to show that these maps can be explicitly integrated in terms of the initial conditions and of the iteration time $n$. Encouraged by these partial results we make the conjecture that the maps are interpolated by a specific one-parameter family of hamiltonian flows, and present the corresponding solution. We enclose a few pictures where the orbits of the continuous and of the discrete flow are depicted.
In this work we give a mechanical (Hamiltonian) interpretation of the so called spectrality property introduced by Sklyanin and Kuznetsov in the context of Backlund transformations (BTs) for finite dimensional integrable systems. The property turns o ut to be deeply connected with the Hamilton-Jacobi separation of variables and can lead to the explicit integration of the underlying model through the expression of the BTs. Once such construction is given, it is shown, in a simple example, that it is possible to interpret the Baxter Q operator defining the quantum BTs us the Greens function, or propagator, of the time dependent Schrodinger equation for the interpolating Hamiltonian.
192 - A. Zabrodin 2007
We consider GL(K|M)-invariant integrable supersymmetric spin chains with twisted boundary conditions and elucidate the role of Backlund transformations in solving the difference Hirota equation for eigenvalues of their transfer matrices. The nested B ethe ansatz technique is shown to be equivalent to a chain of successive Backlund transformations undressing the original problem to a trivial one.
We consider equations in the modified KdV (mKdV) hierarchy and make use of the Miura transformation to construct expressions for their Lax pair. We derive a Lagrangian-based approach to study the bi-Hamiltonian structure of the mKdV equations. We als o show that the complex modified KdV (cmKdV) equation follows from the action principle to have a Lagrangian representation. This representation not only provides a basis to write the cmKdV equation in the canonical form endowed with an appropriate Poisson structure but also help us construct a semianalytical solution of it. The solution obtained by us may serve as a useful guide for purely numerical routines which are currently being used to solve the cmKdV eqution.
We introduce a spectral parameter into the geometrically exact Hamiltonian equations for the elastic rod in a way that creates a Lax pair. This assures integrability and permits application of the inverse scattering transform solution method. If the method can be carried through, the solution of the original problem is recovered by setting the spectral parameter to zero.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا