ترغب بنشر مسار تعليمي؟ اضغط هنا

High-speed discrimination and sorting of sub-micron particles using a microfluidic device

418   0   0.0 ( 0 )
 نشر من قبل Sukumar Rajauria dr
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The size- and fluorescence-based sorting of micro- and nano-scale particles suspended in fluid presents a significant and important challenge for both sample analysis and for manufacturing of nanoparticle-based products. Here we demonstrate a disposable microfluidic particle sorter that enables high-throughput, on-demand counting and binary sorting of sub-micron particles and cells, using either fluorescence or an electrically-based determination of particle size. Size-based sorting uses a resistive pulse sensor integrated on-chip, while fluorescence-based discrimination is achieved using on-the-fly optical image capture and analysis. Following detection and analysis, the individual particles are deflected using a pair of piezoelectric actuators, directing the particles into one of two desired output channels; the main flow goes into a third waste channel. The integrated system can achieve sorting fidelities of better than 98%, and the mechanism can successfully count and actuate, on demand, more than 60,000 particles/min.



قيم البحث

اقرأ أيضاً

In situ observation of precipitation or phase separation induced by solvent addition is important in studying its dynamics. Combined with optical and fluorescence microscopy, microfluidic devices have been leveraged in studying the phase separation i n various materials including biominerals, nanoparticles, and inorganic crystals. However, strong scattering from the subphases in the mixture is problematic for in situ study of phase separation with high temporal and spatial resolution. In this work, we present a quasi-2D microfluidic device combined with total internal reflection microscopy as an approach for in situ observation of phase separation. The quasi-2D microfluidic device comprises of a shallow main channel and a deep side channel. Mixing between a solution in the main channel (solution A) and another solution (solution B) in the side channel is predominantly driven by diffusion due to high fluid resistance from the shallow height of the main channel, which is confirmed using fluorescence microscopy. Moreover, relying on diffusive mixing, we can control the composition of the mixture in the main channel by tuning the composition of solution B. We demonstrate the application of our method for in situ observation of asphaltene precipitation and beta-alanine crystallization.
Laser speckle can provide a powerful tool that may be used for metrology, for example measurements of the incident laser wavelength with a resolution beyond that which may be achieved in a commercial device. However, to realise highest resolution req uires advanced multi-variate analysis techniques, which limit the acquisition rate of such a wavemeter. Here we show an arithmetically simple method to measure wavelength changes with dynamic speckle, based on a Poincar`e descriptor of the speckle pattern. We demonstrate the measurement of wavelength changes at femtometer-level with a measurement time reduced by two orders of magnitude compared to the previous state-of-the-art, which offers promise for applications such as speckle-based laser wavelength stabilisation.
111 - Benjamin Cross 2008
We describe a set-up for studying adsorption of helium in silica aerogels, where the adsorbed amount is easily and precisely controlled by varying the temperature of a gas reservoir between 80 K and 180 K. We present validation experiments and a firs t application to aerogels. This device is well adapted to study hysteresis, relaxation, and metastable states in the adsorption and desorption of fluids in porous media.
45 - Tomas Cizmar 2005
An extended interference pattern close to surface may result in both a transmissive or evanescent surface fields for large area manipulation of trapped particles. The affinity of differing particle sizes to a moving standing wave light pattern allows us to hold and deliver them in a bi-directional manner and importantly demonstrate experimentally particle sorting in the sub-micron region. This is performed without the need of fluid flow (static sorting). Theoretical calculations experimentally confirm that certain sizes of colloidal particles thermally hop more easily between neighboring traps. A new generic method is also presented for particle position detection in an extended periodic light pattern and applied to characterization of optical traps and particle behavior
Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount quantifying the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated {bf microscale}, bias forces as tiny as $10^{-15};{rm N}$ determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nano-devices for a variety of applications including drug delivery, particle filtering and transport in geometrical constrictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا