ﻻ يوجد ملخص باللغة العربية
We present a new method to discriminate periodic from non-periodic irregularly sampled lightcurves. We introduce a periodic kernel and maximize a similarity measure derived from information theory to estimate the periods and a discriminator factor. We tested the method on a dataset containing 100,000 synthetic periodic and non-periodic lightcurves with various periods, amplitudes and shapes generated using a multivariate generative model. We correctly identified periodic and non-periodic lightcurves with a completeness of 90% and a precision of 95%, for lightcurves with a signal-to-noise ratio (SNR) larger than 0.5. We characterize the efficiency and reliability of the model using these synthetic lightcurves and applied the method on the EROS-2 dataset. A crucial consideration is the speed at which the method can be executed. Using hierarchical search and some simplification on the parameter search we were able to analyze 32.8 million lightcurves in 18 hours on a cluster of GPGPUs. Using the sensitivity analysis on the synthetic dataset, we infer that 0.42% in the LMC and 0.61% in the SMC of the sources show periodic behavior. The training set, the catalogs and source code are all available in http://timemachine.iic.harvard.edu.
A fully autonomous data reduction pipeline has been developed for FRODOSpec, an optical fibre-fed integral field spectrograph currently in use at the Liverpool Telescope. This paper details the process required for the reduction of data taken using a
Current time domain facilities are discovering hundreds of new galactic and extra-galactic transients every week. Classifying the ever-increasing number of transients is challenging, yet crucial to further our understanding of their nature, discover
The VST Telescope Control Software logs continuously detailed information about the telescope and instrument operations. Commands, telemetries, errors, weather conditions and anything may be relevant for the instrument maintenance and the identificat
The EPOCH (EROS-2 periodic variable star classification using machine learning) project aims to detect periodic variable stars in the EROS-2 light curve database. In this paper, we present the first result of the classification of periodic variable s
We present SoFiA 2, the fully automated 3D source finding pipeline for the WALLABY extragalactic HI survey with the Australian SKA Pathfinder (ASKAP). SoFiA 2 is a reimplementation of parts of the original SoFiA pipeline in the C programming language