ترغب بنشر مسار تعليمي؟ اضغط هنا

A Novel, Fully Automated Pipeline for Period Estimation in the EROS 2 Data Set

130   0   0.0 ( 0 )
 نشر من قبل Pablo Huijse
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new method to discriminate periodic from non-periodic irregularly sampled lightcurves. We introduce a periodic kernel and maximize a similarity measure derived from information theory to estimate the periods and a discriminator factor. We tested the method on a dataset containing 100,000 synthetic periodic and non-periodic lightcurves with various periods, amplitudes and shapes generated using a multivariate generative model. We correctly identified periodic and non-periodic lightcurves with a completeness of 90% and a precision of 95%, for lightcurves with a signal-to-noise ratio (SNR) larger than 0.5. We characterize the efficiency and reliability of the model using these synthetic lightcurves and applied the method on the EROS-2 dataset. A crucial consideration is the speed at which the method can be executed. Using hierarchical search and some simplification on the parameter search we were able to analyze 32.8 million lightcurves in 18 hours on a cluster of GPGPUs. Using the sensitivity analysis on the synthetic dataset, we infer that 0.42% in the LMC and 0.61% in the SMC of the sources show periodic behavior. The training set, the catalogs and source code are all available in http://timemachine.iic.harvard.edu.



قيم البحث

اقرأ أيضاً

A fully autonomous data reduction pipeline has been developed for FRODOSpec, an optical fibre-fed integral field spectrograph currently in use at the Liverpool Telescope. This paper details the process required for the reduction of data taken using a n integral field spectrograph and presents an overview of the computational methods implemented to create the pipeline. Analysis of errors and possible future enhancements are also discussed.
Current time domain facilities are discovering hundreds of new galactic and extra-galactic transients every week. Classifying the ever-increasing number of transients is challenging, yet crucial to further our understanding of their nature, discover new classes, or ensuring sample purity, for instance, for Supernova Ia cosmology. The Zwicky Transient Facility is one example of such a survey. In addition, it has a dedicated very-low resolution spectrograph, the SEDMachine, operating on the Palomar 60-inch telescope. This spectrographs primary aim is object classification. In practice most, if not all, transients of interest brighter than ~19 mag are typed. This corresponds to approximately 10 to 15 targets a night. In this paper, we present a fully automated pipeline for the SEDMachine. This pipeline has been designed to be fast, robust, stable and extremely flexible. pysedm enables the fully automated spectral extraction of a targeted point source object in less than 5 minutes after the end of the exposure. The spectral color calibration is accurate at the few percent level. In the 19 weeks since pysedm entered production in early August of 2018, we have classified, among other objects, about 400 Type Ia supernovae and 140 Type II supernovae. We conclude that low resolution, fully automated spectrographs such as the `SEDMachine with pysedm installed on 2-m class telescopes within the southern hemisphere could allow us to automatically and simultaneously type and obtain a redshift for most (if not all) bright transients detected by LSST within z<0.2, notably potentially all Type Ia Supernovae. In comparison to the current SEDM design, this would require higher spectral resolution (R~1000) and slightly improved throughput. With this perspective in mind, pysedm has been designed to easily be adaptable to any IFU-like spectrograph (see https://github.com/MickaelRigault/pysedm).
The VST Telescope Control Software logs continuously detailed information about the telescope and instrument operations. Commands, telemetries, errors, weather conditions and anything may be relevant for the instrument maintenance and the identificat ion of problem sources is regularly saved. All information are recorded in textual form. These log files are often examined individually by the observatory personnel for specific issues and for tackling problems raised during the night. Thus, only a minimal part of the information is normally used for daily maintenance. Nevertheless, the analysis of the archived information collected over a long time span can be exploited to reveal useful trends and statistics about the telescope, which would otherwise be overlooked. Given the large size of the archive, a manual inspection and handling of the logs is cumbersome. An automated tool with an adequate user interface has been developed to scrape specific entries within the log files, process the data and display it in a comprehensible way. This pipeline has been used to scan the information collected over 5 years of telescope activity.
The EPOCH (EROS-2 periodic variable star classification using machine learning) project aims to detect periodic variable stars in the EROS-2 light curve database. In this paper, we present the first result of the classification of periodic variable s tars in the EROS-2 LMC database. To classify these variables, we first built a training set by compiling known variables in the Large Magellanic Cloud area from the OGLE and MACHO surveys. We crossmatched these variables with the EROS-2 sources and extracted 22 variability features from 28 392 light curves of the corresponding EROS-2 sources. We then used the random forest method to classify the EROS-2 sources in the training set. We designed the model to separate not only $delta$ Scuti stars, RR Lyraes, Cepheids, eclipsing binaries, and long-period variables, the superclasses, but also their subclasses, such as RRab, RRc, RRd, and RRe for RR Lyraes, and similarly for the other variable types. The model trained using only the superclasses shows 99% recall and precision, while the model trained on all subclasses shows 87% recall and precision. We applied the trained model to the entire EROS-2 LMC database, which contains about 29 million sources, and found 117 234 periodic variable candidates. Out of these 117 234 periodic variables, 55 285 have not been discovered by either OGLE or MACHO variability studies. This set comprises 1 906 $delta$ Scuti stars, 6 607 RR Lyraes, 638 Cepheids, 178 Type II Cepheids, 34 562 eclipsing binaries, and 11 394 long-period variables. A catalog of these EROS-2 LMC periodic variable stars will be available online at http://stardb.yonsei.ac.kr and at the CDS website (http://vizier.u-strasbg.fr/viz-bin/VizieR).
We present SoFiA 2, the fully automated 3D source finding pipeline for the WALLABY extragalactic HI survey with the Australian SKA Pathfinder (ASKAP). SoFiA 2 is a reimplementation of parts of the original SoFiA pipeline in the C programming language and makes use of OpenMP for multi-threading of the most time-critical algorithms. In addition, we have developed a parallel framework called SoFiA-X that allows the processing of large data cubes to be split across multiple computing nodes. As a result of these efforts, SoFiA 2 is substantially faster and comes with a much reduced memory footprint compared to its predecessor, thus allowing the large WALLABY data volumes of hundreds of gigabytes of imaging data per epoch to be processed in real-time. The source code has been made publicly available to the entire community under an open-source licence. Performance tests using mock galaxies injected into genuine ASKAP data suggest that in the absence of significant imaging artefacts SoFiA 2 is capable of achieving near-100% completeness and reliability above an integrated signal-to-noise ratio of about 5-6. We also demonstrate that SoFiA 2 generally recovers the location, integrated flux and w20 line width of galaxies with high accuracy. Other parameters, including the peak flux density and w50 line width, are more strongly biased due to the influence of the noise on the measurement. In addition, very faint galaxies below an integrated signal-to-noise ratio of about 10 may get broken up into multiple components, thus requiring a strategy to identify fragmented sources and ensure that they do not affect the integrity of any scientific analysis based on the SoFiA 2 output.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا