ﻻ يوجد ملخص باللغة العربية
We have recently investigated the phase behaviour of model colloidal dumbbells constituted by two identical tangent hard spheres, with the first one being surrounded by an attractive square-well interaction (Janus dumbbells, Muna`o G et al 2014 Soft Matter 10 5269). Here we extend our previous analysis by introducing in the model the size asymmetry of the hard-core diameters, and study the enriched phase scenario thereby obtained. By employing standard Monte Carlo simulations we show that in such heteronuclear Janus dumbbells a larger hard-sphere site promotes the formation of clusters, whereas in the opposite condition a gas-liquid phase separation takes place, with a narrow interval of intermediate asymmetries wherein the two phase behaviours may compete. In addition, some peculiar geometrical arrangements, such as lamellae, are observed only around the perfectly symmetric case. A qualitative agreement is found with recent experimental results, where it is shown that the roughness of molecular surfaces in heterogeneous dimers leads to the formation of colloidal micelles.
We show that an enslaved phase-separation front moving with diffusive speeds U = C T^(-1/2) can leave alternating domains of increasing size in their wake. We find the size and spacing of these domains is identical to Liesegang patterns. For equal co
We investigate thermodynamic and structural properties of colloidal dumbbells in the framework provided by the Reference Interaction Site Model (RISM) theory of molecular fluids and Monte Carlo simulations. We consider two different models: in the fi
We explore reshaping of nematoelastic films upon imbibing an isotropic solvent under conditions when isotropic and nematic phases coexist. The structure of the interphase boundary is computed taken into account the optimal nematic orientation governe
We study numerically a model of non-aligning self-propelled particles interacting through steric repulsion, which was recently shown to exhibit active phase separation in two dimensions in the absence of any attractive interaction or breaking of the
We report that binary dispersions of like-charged colloidal particles with large charge asymmetry but similar size exhibit phase separation into crystal and fluid phases under very low salt conditions. This is unexpected because the effective colloid