ﻻ يوجد ملخص باللغة العربية
Giant lobes of plasma extend 55 degrees above and below the Galactic Center, glowing in emission from gamma rays (the Fermi Bubbles) to microwaves (the WMAP haze) and polarized radio waves. We use ultraviolet absorption-line spectra from the Hubble Space Telescope to constrain the velocity of the outflowing gas within these regions, targeting the quasar PDS 456 (Galactic coordinates l,b=10.4, +11.2 degrees). This sightline passes through a clear biconical structure seen in hard X-ray and gamma-ray emission near the base of the northern Fermi Bubble. We report two high-velocity metal absorption components, at v_LSR=-235 and +250 km/s, which cannot be explained by co-rotating gas in the Galactic disk or halo. Their velocities are suggestive of an origin on the front and back side of an expanding biconical outflow emanating from the Galactic Center. We develop simple kinematic biconical outflow models that can explain these observed profiles with an outflow velocity of ~900 km/s and a full opening angle of ~110 degrees (matching the X-ray bicone). This indicates Galactic Center activity over the last ~2.5-4.0 Myr, in line with age estimates of the Fermi Bubbles. The observations illustrate the use of UV absorption-line spectroscopy to probe the properties of swept-up gas venting into the Fermi Bubbles.
Two giant plasma lobes, known as the Fermi Bubbles, extend 10 kpc above and below the Galactic Center. Since their discovery in X-rays in 2003 (and in gamma-rays in 2010), the Bubbles have been recognized as a new morphological feature of our Galaxy
The centre of the Milky Way is the site of several high-energy processes that have strongly impacted the inner regions of our Galaxy. Activity from the super-massive black hole, Sgr A*, and/or stellar feedback from the inner molecular ring expel matt
The nuclear stellar disc (NSD) is a flattened stellar structure that dominates the gravitational potential of the Milky Way at Galactocentric radii $30 lesssim R lesssim 300{, rm pc}$. In this paper, we construct axisymmetric Jeans dynamical models o
To characterize the absorption properties of this circumgalactic medium (CGM) and its relation to the LG we present the so-far largest survey of metal absorption in Galactic high-velocity clouds (HVCs) using archival ultraviolet (UV) spectra of extra
We present the results of a large-scale proper motion study of the central ~36x16 of the Milky Way, based on our high angular resolution GALACTICNUCLEUS survey (epoch 2015) combined with the HST Paschen-alpha survey (epoch 2008). Our catalogue contai