ﻻ يوجد ملخص باللغة العربية
Homologous gene shuffling between DNA promotes genetic diversity and is an important pathway for DNA repair. For this to occur, homologous genes need to find and recognize each other. However, despite its central role in homologous recombination, the mechanism of homology recognition is still an unsolved puzzle. While specific proteins are known to play a role at later stages of recombination, an initial coarse grained recognition step has been proposed. This relies on the sequence dependence of the DNA structural parameters, such as twist and rise, mediated by intermolecular interactions, in particular electrostatic ones. In this proposed mechanism, sequences having the same base pair text, or are homologous, have lower interaction energy than those sequences with uncorrelated base pair texts; the difference termed the recognition energy. Here, we probe how the recognition energy changes when one DNA fragment slides past another, and consider, for the first time, homologous sequences in antiparallel alignment. This dependence on sliding was termed the recognition well. We find that there is recognition well for anti-parallel, homologous DNA tracts, but only a very shallow one, so that their interaction will differ little from the interaction between two nonhomologous tracts. This fact may be utilized in single molecule experiments specially targeted to test the theory. As well as this, we test previous theoretical approximations in calculating the recognition well for parallel molecules against MC simulations, and consider more rigorously the optimization of the orientations of the fragments about their long axes. The more rigorous treatment affects the recognition energy a little, when the molecules are considered rigid. However when torsional flexibility of the DNA molecules is introduced, we find excellent agreement between analytical approximation and simulation.
When DNA molecules are heated they denature. This occurs locally so that loops of molten single DNA strands form, connected by intact double-stranded DNA pieces. The properties of this melting transition have been intensively investigated. Recently t
Semiflexible polymers characterized by the contour length $L$ and persistent length $ell_p$ confined in a spatial region $D$ have been described as a series of ``{em spherical blobs} and ``{em deflecting lines} by de Gennes and Odjik for $ell_p < D$
The role of thermal pressure fluctuation excited within tightly packaged DNA prior to ejection from protein capsid shells is discussed in a model calculation. At equilibrium before ejection we assume the DNA is folded many times into a bundle of para
Advanced Monte Carlo simulations are used to study the effect of nano-slit confinement on metric and topological properties of model DNA chains. We consider both linear and circularised chains with contour lengths in the 1.2--4.8 $mu$m range and slit
The determination of a patients DNA sequence can, in principle, reveal an increased risk to fall ill with particular diseases [1,2] and help to design personalized medicine [3]. Moreover, statistical studies and comparison of genomes [4] of a large n