ﻻ يوجد ملخص باللغة العربية
We use ultradeep SCUBA-2 850um observations (~0.37 mJy rms) of the 2 Ms Chandra Deep Field-North (CDF-N) and 4 Ms Chandra Deep Field-South (CDF-S) X-ray fields to examine the amount of dusty star formation taking place in the host galaxies of high-redshift X-ray AGNs. Supplementing with COSMOS, we measure the submillimeter fluxes of the 4-8 keV sources at z>1, finding little flux at the highest X-ray luminosities but significant flux at intermediate luminosities. We determine gray body and MIR luminosities by fitting spectral energy distributions to each X-ray source and to each radio source in an ultradeep Karl G. Jansky Very Large Array (VLA) 1.4 GHz (11.5uJy at 5-sigma) image of the CDF-N. We confirm the FIR-radio and MIR-radio correlations to z=4 using the non-X-ray detected radio sources. Both correlations are also obeyed by the X-ray less luminous AGNs but not by the X-ray quasars. We interpret the low FIR luminosities relative to the MIR for the X-ray quasars as being due to a lack of star formation, while the MIR stays high due to the AGN contribution. We find that the FIR luminosity distributions are highly skewed and the means are dominated by a small number of high-luminosity galaxies. Thus, stacking or averaging analyses will overestimate the level of star formation taking place in the bulk of the X-ray sample. We conclude that most of the host galaxies of X-ray quasars are not strong star formers, perhaps because their star formation is suppressed by AGN feedback.
Theoretical models have suggested an evolutionary model for quasars, in which most of luminous quasars are triggered by major mergers. It is also postulated that reddening as well as powerful outflows indicate an early phase of activity, close to the
Galaxy interactions are thought to be one of the main triggers of Active Galactic Nuclei (AGN), especially at high luminosities, where the accreted gas mass during the AGN lifetime is substantial. Evidence for a connection between mergers and AGN, ho
We present the results from VLT/X-shooter spectroscopic observations of 11 extremely strong intervening damped Lyman-alpha absorbers (ESDLAs) initially selected as high N(Hi) (i.e.>=5x10^21 cm-2) candidates from the Sloan Digital Sky Survey (SDSS). W
Black hole mass scaling relations suggest that extremely massive black holes (EMBHs) with $M_mathrm{BH}ge10^{9.4},M_{odot}$ are found in the most massive galaxies with $M_mathrm{star}ge10^{11.6},M_{odot}$, which are commonly found in dense environmen
Inspired by the discovery of the Phoenix cluster by the South Pole Telescope team, we initiated a search for other massive clusters of galaxies missing from the standard X-ray catalogs. We began by identifying 25 cluster candidates not included in th