ترغب بنشر مسار تعليمي؟ اضغط هنا

Variation of galactic cold gas reservoirs with stellar mass

158   0   0.0 ( 0 )
 نشر من قبل Natasha Maddox
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The stellar and neutral hydrogen (HI) mass functions at z~0 are fundamental benchmarks for current models of galaxy evolution. A natural extension of these benchmarks is the two-dimensional distribution of galaxies in the plane spanned by stellar and HI mass, which provides a more stringent test of simulations, as it requires the HI to be located in galaxies of the correct stellar mass. Combining HI data from the ALFALFA survey, with optical data from SDSS, we find a distinct envelope in the HI-to-stellar mass distribution, corresponding to an upper limit in the HI fraction that varies monotonically over five orders of magnitude in stellar mass. This upper envelope in HI fraction does not favour the existence of a significant population of dark galaxies with large amounts of gas but no corresponding stellar population. The envelope shows a break at a stellar mass of ~10^9 Msun, which is not reproduced by modern models of galaxy populations tracing both stellar and gas masses. The discrepancy between observations and models suggests a mass dependence in gas storage and consumption missing in current galaxy evolution prescriptions. The break coincides with the transition from galaxies with predominantly irregular morphology at low masses to regular disks at high masses, as well as the transition from cold to hot accretion of gas in simulations.



قيم البحث

اقرأ أيضاً

The Hubble morphological sequence from early to late galaxies corresponds to an increasing rate of specific star formation. The Hubble sequence also follows a banana-shaped correlation between 24 and 70 micron luminosities, both normalized with the K -band luminosity. We show that this correlation is significantly tightened if galaxies with central AGN emission are removed, but the cosmic scatter of elliptical galaxies in both 24 and 70 micron luminosities remains significant along the correlation. We find that the 24 micron variation among ellipticals correlates with stellar metallicity, reflecting emission from hot dust in winds from asymptotic giant branch stars of varying metallicity. Infrared surface brightness variations in elliptical galaxies indicate that the K - 24 color profile is U-shaped for reasons that are unclear. In some elliptical galaxies cold interstellar dust emitting at 70 and 160 microns may arise from recent gas-rich mergers. However, we argue that most of the large range of 70 micron luminosity in elliptical galaxies is due to dust transported from galactic cores by feedback events in (currently IR-quiet) active galactic nuclei. Cooler dusty gas naturally accumulates in the cores of elliptical galaxies due to dust-cooled local stellar mass loss and may accrete onto the central black hole, releasing energy. AGN-heated gas can transport dust in cores 5-10 kpc out into the hot gas atmospheres where it radiates extended 70 micron emission but is eventually destroyed by sputtering. This, and some modest star formation, defines a cycle of dust creation and destruction. Elliptical galaxies evidently undergo large transient excursions in the banana plot in times comparable to the sputtering time or AGN duty cycle, 10 Myrs. Normally regarded as passive, elliptical galaxies are the most active galaxies in the IR color-color correlation.
Within a galaxy the stellar mass-to-light ratio $Upsilon_*$ is not constant. Spatially resolved kinematics of nearby early-type galaxies suggest that allowing for a variable initial mass function (IMF) returns significantly larger $Upsilon_*$ gradien ts than if the IMF is held fixed. If $Upsilon_*$ is greater in the central regions, then ignoring the IMF-driven gradient can overestimate $M_*^{rm dyn}$ by as much as a factor of two for the most massive galaxies, though stellar population estimates $M_*^{rm SP}$ are also affected. Large $Upsilon_*$-gradients have four main consequences: First, $M_*^{rm dyn}$ cannot be estimated independently of stellar population synthesis models. Second, if there is a lower limit to $Upsilon_*$ and gradients are unknown, then requiring $M_*^{rm dyn}=M_*^{rm SP}$ constrains them. Third, if gradients are stronger in more massive galaxies, then $M_*^{rm dyn}$ and $M_*^{rm SP}$ can be brought into agreement, not by shifting $M_*^{rm SP}$ upwards by invoking constant bottom-heavy IMFs, as advocated by a number of recent studies, but by revising $M_*^{rm dyn}$ estimates in the literature downwards. Fourth, accounting for $Upsilon_*$ gradients changes the high-mass slope of the stellar mass function $phi(M_*^{rm dyn})$, and reduces the associated stellar mass density. These conclusions potentially impact estimates of the need for feedback and adiabatic contraction, so our results highlight the importance of measuring $Upsilon_*$ gradients in larger samples.
Observations using the 7 mm receiver system on the Australia Telescope Compact Array have revealed large reservoirs of molecular gas in two high-redshift radio galaxies: HATLAS J090426.9+015448 (z = 2.37) and HATLAS J140930.4+003803 (z = 2.04). Optic ally the targets are very faint, and spectroscopy classifies them as narrow-line radio galaxies. In addition to harbouring an active galactic nucleus the targets share many characteristics of sub-mm galaxies. Far-infrared data from Herschel-ATLAS suggest high levels of dust (>10^9 M_solar) and a correspondingly large amount of obscured star formation (~1000 M_solar / yr). The molecular gas is traced via the J = 1-0 transition of 12CO, its luminosity implying total H_2 masses of (1.7 +/- 0.3) x 10^11 and (9.5 +/- 2.4) x 10^10 (alpha_CO/0.8) M_solar in HATLAS J090426.9+015448 and HATLAS J140930.4+003803 respectively. Both galaxies exhibit molecular line emission over a broad (~1000 km/s) velocity range, and feature double-peaked profiles. We interpret this as evidence of either a large rotating disk or an on-going merger. Gas depletion timescales are ~100 Myr. The 1.4 GHz radio luminosities of our targets place them close to the break in the luminosity function. As such they represent `typical z > 2 radio sources, responsible for the bulk of the energy emitted at radio wavelengths from accretion-powered sources at high redshift, and yet they rank amongst the most massive systems in terms of molecular gas and dust content. We also detect 115 GHz rest-frame continuum emission, indicating a very steep high-radio-frequency spectrum, possibly classifying the targets as compact steep spectrum objects.
199 - Jeremy J. Webb , Jo Bovy 2021
Stellar streams are the inevitable end product of star cluster evolution, with the properties of a given stream being related to its progenitor. We consider how the dynamical history of a progenitor cluster, as traced by the evolution of its stellar mass function, is reflected in the resultant stream. We generate model streams by evolving star clusters with a range of initial half-mass relaxation times and dissolution times via direct N-body simulations. Stellar streams that dissolve quickly show no variation in the stellar mass function along the stream. Variation is, however, observed along streams with progenitor clusters that dissolve after several relaxation times. The mass function at the edges of a stream is approximately primordial as it is populated by the first stars to escape the cluster before segregation occurs. Moving inwards the mass function steepens as the intermediate parts of the stream consist of mostly low-mass stars that escaped the cluster after some segregation has occurred. The centre of the stream is then marked by a flatter mass function, as the region is dominated by high-mass stars that quickly segregated to the progenitor clusters centre and were the last stars to become unbound. We further find that the maximum slope of the mass function along the stream and the rate at which it decreases with distance from the dissolved progenitor serve as proxies for the dynamical state reached by the progenitor cluster before dissolution; this may be able to be applied to observed streams with near-future observations.
118 - R. Decarli , C. Carilli , C. Casey 2018
The goal of this science case is to accurately pin down the molecular gas content of high redshift galaxies. By targeting the CO ground transition, we circumvent uncertainties related to CO excitation. The ngVLA can observe the CO(1-0) line at virtua lly any $z>1.5$, thus exposing the evolution of gaseous reservoirs from the earliest epochs down to the peak of the cosmic history of star formation. The order-of-magnitude improvement in the number of CO detections with respect to state-of-the-art observational campaigns will provide a unique insight on the evolution of galaxies through cosmic time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا