ﻻ يوجد ملخص باللغة العربية
We present numerical simulations of a 15 solar mass star in a suite of idealised environments in order to quantify the amount of energy transmitted to the interstellar medium (ISM). We include models of stellar winds, UV photoionisation and the subsequent supernova based on theoretical models and observations of stellar evolution. The system is simulated in 3D using RAMSES-RT, an Adaptive Mesh Refinement Radiation Hydrodynamics code. We find that stellar winds have a negligible impact on the system owing to their relatively low luminosity compared to the other processes. The main impact of photoionisation is to reduce the density of the medium into which the supernova explodes, reducing the rate of radiative cooling of the subsequent supernova. Finally, we present a grid of models quantifying the energy and momentum of the system that can be used to motivate simulations of feedback in the ISM unable to fully resolve the processes discussed in this work.
FEEDBACK is a SOFIA legacy program dedicated to study the interaction of massive stars with their environment. It performs a survey of 11 galactic high mass star forming regions in the 158 $mu$m (1.9 THz) line of CII and the 63 $mu$m (4.7 THz) line o
We present the first statistical study of X-ray cavities in distant clusters of galaxies (z > 0.3). With the aim of providing further insight into how AGN feedback operates at higher redshift, we have analysed the Chandra X-ray observations of the Ma
We present mid-infrared spectral maps of the NGC 1333 star forming region, obtained with the the Infrared Spectrometer on board the Spitzer Space Telescope. Eight pure H2 rotational lines, from S (0) to S (7), are detected and mapped. The H2 emission
Using a suite of radiation hydrodynamic simulations of star cluster formation in turbulent clouds, we study the escape fraction of ionizing (Lyman continuum) and non-ionizing (FUV) radiation for a wide range of cloud masses and sizes. The escape frac
We present mid-infrared (MIR) observations, made with the TIMMI2 camera on the ESO 3.6 m telescope, toward 14 young massive star-forming regions. All regions were imaged in the N band, and nine in the Q band, with an angular resolution of ~ 1 arcsec.