ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-organization in soliton modelocked parametric frequency combs

65   0   0.0 ( 0 )
 نشر من قبل Henry Wen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that self-organization occurs in the phase dynamics of soliton modelocking in paramet- ric frequency combs. Reduction of the Lugiato-Lefever equation (LLE) to a simpler set of phase equations reveals that this self-organization arises via mechanisms akin to those in the Kuramoto model for synchronization of coupled oscillators. In addition, our simulations show that the phase equations evolve to a broadband phase-locked state, analogous to the soliton formation process in the LLE. Our simplified equations intuitively explain the origin of the pump phase offset in soliton- modelocked parametric frequency combs. They also predict that the phase of the intracavity field undergoes an anti-symmetrization that precedes phase synchronization, and they clarify the role of chaotic states in soliton formation in parametric combs.

قيم البحث

اقرأ أيضاً

We investigate the formation of dark vector localized structures in the presence of nonlinear polarization mode coupling in optical resonators subject to a coherent optical injection in the normal dispersion regime. This simple device is described by coupled Lugiato-Lefever equations. The stabilization of localized structures is attributed to a front locking mechanism. We show that in a multistable homogeneous steady-state regime, two branches of dark localized structures can coexist for a fixed value of the system parameters. These coexisting solutions possess different polarization states and different power peaks in the microresonator. We characterize in-depth their formation by drawing their bifurcation diagrams in regimes close to modulational instability and far from it. It is shown that both branches of localized structures exhibit a heteroclinic collapse snaking type of behavior. The coexistence of two vectorial branches of dark localized states is not possible without taking into account polarization degrees of freedom.
Thermal field soliton self-organization arising due to absorption of background atoms vibrations is observed in numerical experiment in nonlinear chain with Lennard-Jones potential at high temperature. At some stage intensive space-localized waves ar e formed and give additional peaks on high-energy tile of energy distribution unlike of Gibbs one.
This article discusses self-organization in cold atoms via light-mediated interactions induced by feedback from a single retro-reflecting mirror. Diffractive dephasing between the pump beam and the spontaneous sidebands selects the lattice period. Sp ontaneous breaking of the rotational and translational symmetry occur in the 2D plane transverse to the pump. We elucidate how diffractive ripples couple sites on the self-induced atomic lattice. The nonlinear phase shift of the atomic cloud imprinted onto the optical beam is the parameter determining coupling strength. The interaction can be tailored to operate either on external degrees of freedom leading to atomic crystallization for thermal atoms and supersolids for a quantum degenerate gas, or on internal degrees of freedom like populations of the excited state or Zeeman sublevels. Using the light polarization degrees of freedom on the Poincar{e} sphere (helicity and polarization direction), specific irreducible tensor components of the atomic Zeeman states can be coupled leading to spontaneous magnetic ordering of states of dipolar and quadrupolar nature. The requirements for critical interaction strength are compared for the different situations. Connections and extensions to longitudinally pumped cavities, counterpropagating beam schemes and the CARL instability are discussed.
91 - F. Maucher , T. Pohl , S. Skupin 2015
We study the propagation of light beams through optical media with competing nonlocal nonlinearities. We demonstrate that the nonlocality of competing focusing and defocusing nonlinearities gives rise to self-organization and stationary states with s table hexagonal intensity patterns, akin to transverse crystals of light filaments. Signatures of this long-range ordering are shown to be observable in the propagation of light in optical waveguides and even in free space. We consider a specific form of the nonlinear response that arises in atomic vapor upon proper light coupling. Yet, the general phenomenon of self-organization is a generic consequence of competing nonlocal nonlinearities, and may, hence, also be observed in other settings.
We report on the experimental observation of coherent cavity soliton frequency combs in silica microspheres. Specifically, we demonstrate that careful alignment of the microsphere relative to the coupling fiber taper allows for the suppression of hig her-order spatial modes, reducing mode interactions and enabling soliton formation. Our measurements show that the temporal cavity solitons have sub-100-fs durations, exhibit considerable Raman self-frequency shift, and generally come in groups of three or four, occasionally with equidistant spacing in the time domain. RF amplitude noise measurements and spectral interferometry confirm the high coherence of the observed soliton frequency combs, and numerical simulations show good agreement with experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا