ترغب بنشر مسار تعليمي؟ اضغط هنا

A Polyakov formula for sectors

103   0   0.0 ( 0 )
 نشر من قبل Clara Lucia Aldana Dominguez
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider finite area convex Euclidean circular sectors. We prove a variational Polyakov formula which shows how the zeta-regularized determinant of the Laplacian varies with respect to the opening angle. Varying the angle corresponds to a conformal deformation in the direction of a conformal factor with a logarithmic singularity at the origin. We compute explicitly all the contributions to this formula coming from the different parts of the sector. In the process, we obtain an explicit expression for the heat kernel on an infinite area sector using Carslaw-Sommerfelds heat kernel. We also compute the zeta-regularized determinant of rectangular domains of unit area and prove that it is uniquely maximized by the square.



قيم البحث

اقرأ أيضاً

We consider the Landau Hamiltonian perturbed by a long-range electric potential $V$. The spectrum of the perturbed operator consists of eigenvalue clusters which accumulate to the Landau levels. First, we obtain an estimate of the rate of the shrinki ng of these clusters to the Landau levels as the number of the cluster $q$ tends to infinity. Further, we assume that there exists an appropriate $V$, homogeneous of order $-rho$ with $rho in (0,1)$, such that $V(x) = V(x) + O(|x|^{-rho - epsilon})$, $epsilon > 0$, as $|x| to infty$, and investigate the asymptotic distribution of the eigenvalues within a given cluster, as $q to infty$. We obtain an explicit description of the asymptotic density of the eigenvalues in terms of the mean-value transform of $V$.
We consider a class of Jacobi matrices with unbounded entries in the so called critical (double root, Jordan box) case. We prove a formula for the spectral density of the matrix which relates its spectral density to the asymptotics of orthogonal polynomials associated with the matrix.
66 - Vesselin Petkov 2016
We present a survey of some recent results concerning the location and the Weyl formula for the complex eigenvalues of two non self-adjoint operators. We study the eigenvalues of the generator $G$ of the contraction semigroup $e^{tG}, : t geq 0,$ rel ated to the wave equation in an unbounded domain $Omega$ with dissipative boundary conditions on $partial Omega$. Also one examines the interior transmission eigenvalues (ITE) in a bounded domain $K$ obtaining a Weyl formula with remainder for the counting function $N(r)$ of complex (ITE). The analysis is based on a semi-classical approach.
The paper deals with a formally self-adjoint first order linear differential operator acting on m-columns of complex-valued half-densities over an n-manifold without boundary. We study the distribution of eigenvalues in the elliptic setting and the p ropagator in the hyperbolic setting, deriving two-term asymptotic formulae for both. We then turn our attention to the special case of a two by two operator in dimension four. We show that the geometric concepts of Lorentzian metric, Pauli matrices, spinor field, connection coefficients for spinor fields, electromagnetic covector potential, Dirac equation and Dirac action arise naturally in the process of our analysis.
283 - Zhiqin Lu , Julie Rowlett 2011
Consider a quantum particle trapped between a curved layer of constant width built over a complete, non-compact, $mathcal C^2$ smooth surface embedded in $mathbb{R}^3$. We assume that the surface is asymptotically flat in the sense that the second fu ndamental form vanishes at infinity, and that the surface is not totally geodesic. This geometric setting is known as a quantum layer. We consider the quantum particle to be governed by the Dirichlet Laplacian as Hamiltonian. Our work concerns the existence of bound states with energy beneath the essential spectrum, which implies the existence of discrete spectrum. We first prove that if the Gauss curvature is integrable, and the surface is weakly $kappa$-parabolic, then the discrete spectrum is non-empty. This result implies that if the total Gauss curvature is non-positive, then the discrete spectrum is non-empty. We next prove that if the Gauss curvature is non-negative, then the discrete spectrum is non-empty. Finally, we prove that if the surface is parabolic, then the discrete spectrum is non-empty if the layer is sufficiently thin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا