ترغب بنشر مسار تعليمي؟ اضغط هنا

Cocharacter-closure and the rational Hilbert-Mumford Theorem

367   0   0.0 ( 0 )
 نشر من قبل Gerhard Roehrle
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a field k, let G be a reductive k-group and V an affine k-variety on which G acts. Using the notion of cocharacter-closed G(k)-orbits in V, we prove a rational version of the celebrated Hilbert-Mumford Theorem from geometric invariant theory. We initiate a study of applications stemming from this rationality tool. A number of examples are discussed to illustrate the concept of cocharacter-closure and to highlight how it differs from the usual Zariski-closure. When k is perfect, we give a criterion in terms of closed orbits for G to be k-anisotropic, answering a question of Borel.



قيم البحث

اقرأ أيضاً

Let $k$ be a field, let $G$ be a reductive $k$-group and $V$ an affine $k$-variety on which $G$ acts. In this note we continue our study of the notion of cocharacter-closed $G(k)$-orbits in $V$. In earlier work we used a rationality condition on the point stabilizer of a $G$-orbit to prove Galois ascent/descent and Levi ascent/descent results concerning cocharacter-closure for the corresponding $G(k)$-orbit in $V$. In the present paper we employ building-theoretic techniques to derive analogous results.
Let $K$ be an algebraically closed field of null characteristic and $p(z)$ a Hilbert polynomial. We look for the minimal Castelnuovo-Mumford regularity $m_{p(z)}$ of closed subschemes of projective spaces over $K$ with Hilbert polynomial $p(z)$. Expe rimental evidences led us to consider the idea that $m_{p(z)}$ could be achieved by schemes having a suitable minimal Hilbert function. We give a constructive proof of this fact. Moreover, we are able to compute the minimal Castelnuovo-Mumford regularity $m_p(z)^{varrho}$ of schemes with Hilbert polynomial $p(z)$ and given regularity $varrho$ of the Hilbert function, and also the minimal Castelnuovo-Mumford regularity $m_u$ of schemes with Hilbert function $u$. These results find applications in the study of Hilbert schemes. They are obtained by means of minimal Hilbert functions and of two new constructive methods which are based on the notion of growth-height-lexicographic Borel set and called ideal graft and extended lifting.
We define a notion of rational closure for the logic SHIQ, which does not enjoys the finite model property, building on the notion of rational closure introduced by Lehmann and Magidor in [23]. We provide a semantic characterization of rational closu re in SHIQ in terms of a preferential semantics, based on a finite rank characterization of minimal models. We show that the rational closure of a TBox can be computed in EXPTIME using entailment in SHIQ.
We study the cohomology of Jacobians and Hilbert schemes of points on reduced and locally planar curves, which are however allowed to be singular and reducible. We show that the cohomologies of all Hilbert schemes of all subcurves are encoded in the cohomologies of the fine compactified Jacobians of connected subcurves, via the perverse Leray filtration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا