ترغب بنشر مسار تعليمي؟ اضغط هنا

Subarcsecond international LOFAR radio images of the M82 nucleus at 118 MHz and 154 MHz

203   0   0.0 ( 0 )
 نشر من قبل Eskil Varenius
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nuclear starburst in the nearby galaxy M82 provides an excellent laboratory for understanding the physics of star formation. This galaxy has been extensively observed in the past, revealing tens of radio-bright compact objects embedded in a diffuse free-free absorbing medium. Our understanding of the structure and physics of this medium in M82 can be greatly improved by high-resolution images at low frequencies where the effects of free-free absorption are most prominent. The aims of this study are, firstly, to demonstrate imaging using international baselines of the Low Frequency Array (LOFAR), and secondly, to constrain low-frequency spectra of compact and diffuse emission in the central starburst region of M82 via high-resolution radio imaging at low frequencies. The international LOFAR telescope was used to observe M82 at 110-126MHz and 146-162MHz. Images were obtained using standard techniques from very long baseline interferometry. images were obtained at each frequency range: one only using international baselines, and one only using the longest Dutch (remote) baselines. The 154MHz image obtained using international baselines is a new imaging record in terms of combined image resolution (0.3$$) and sensitivity ($sigma$=0.15mJy/beam) at low frequencies ($<327$MHz). We detected 16 objects at 154MHz, six of these also at 118MHz. Four weaker but resolved features are also found: a linear (50pc) filament and three other resolved objects, of which two show a clear shell structure. We do not detect any emission from either supernova 2008iz or from the radio transient source 43.78+59.3. The images obtained using remote baselines show diffuse emission, associated with the outflow in M82, with reduced brightness in the region of the edge-on star-forming disk.

قيم البحث

اقرأ أيضاً

We analyse new observations with the International Low Frequency Array (LOFAR) telescope, and archival data from the Multi-Element Radio Linked Interferometer Network (MERLIN) and the Karl G. Jansky Very Large Array (VLA). We model the spatially reso lved radio spectrum of Arp 220 from 150 MHz to 33 GHz. We present an image of Arp 220 at 150 MHz with resolution $0.65times0.35$, sensitivity 0.15 mJy beam$^{-1}$, and integrated flux density $394pm59$ mJy. More than 80% of the detected flux comes from extended ($6approx$2.2 kpc) steep spectrum ($alpha=-0.7$) emission, likely from star formation in the molecular disk surrounding the two nuclei. We find elongated features extending $0.3$ (110 pc) and $0.9$ (330 pc) from the eastern and western nucleus respectively, which we interpret as evidence for outflows. The extent of radio emission requires acceleration of cosmic rays far outside the nuclei. We find that a simple three component model can explain most of the observed radio spectrum of the galaxy. When accounting for absorption at 1.4 GHz, Arp 220 follows the FIR/radio correlation with $q=2.36$, and we estimate a star formation rate of 220 M$_odottext{yr}^{-1}$. We derive thermal fractions at 1 GHz of less than 1% for the nuclei, which indicates that a major part of the UV-photons are absorbed by dust. International LOFAR observations shows great promise to detect steep spectrum outflows and probe regions of thermal absorption. However, in LIRGs the emission detected at 150 MHz does not necessarily come from the main regions of star formation. This implies that high spatial resolution is crucial for accurate estimates of star formation rates for such galaxies at 150 MHz.
Relatively little information is available about the Universe at ultra-low radio frequencies, i.e. below 50 MHz (ULF), although the ULF spectral window contains a wealth of unique diagnostics for studying galactic and extragalactic phenomena. Sub-arc second resolution imaging at these frequencies is extremely difficult, due to the long baselines (>1000 km) required and large ionospheric perturbations. We have conducted a pilot project to investigate the ULF performance and potential of the International LOFAR Telescope (ILT), a trans-European interferometric array with baselines up to ~2000 km and observing frequencies down to 10 MHz. We have successfully produced images with sub-arcsecond resolution for 6 radio sources at frequencies down to 30 MHz. This is more than an order of magnitude better resolution than pre-ILT observations at similar frequencies. The six targets that we have imaged (3C 196, 3C 225, 3C 273, 3C 295, 3C 298 and 3C 380) are bright radio sources with compact structures. By comparing our data of 3C 196 and 3C 273 with observations at higher frequencies, we investigate their spatially resolved radio spectral properties. Our success shows that at frequencies down to 30 MHz, sub-arcsecond imaging with the ILT is possible. Further analysis is needed to determine the feasibility of observations of fainter sources or sources with less compact emission.
We study for the first time the low-frequency ($sim$150 MHz) radio brightness distribution of Arp~299 at subarcsecond resolution, tracing in both compact and extended emission regions the local spectral energy distribution (SED) in order to character ize the dominant emission and absorption processes. We analysed the spatially resolved emission of Arp 299 revealed by 150 MHz international baseline Low-Frequency Array (LOFAR) and 1.4, 5.0, and 8.4 GHz Very Large Array (VLA) observations. We present the first subarcsecond (0.4$sim$100~pc) image of the whole Arp~299 system at 150~MHz. The high surface brightness sensitivity of our LOFAR observations ($sim$100 $mu$Jy/beam) allowed us to detect all of the nuclear components detected at higher frequencies, as well as the extended steep-spectrum emission surrounding the nuclei. We obtained spatially resolved, two-point spectral index maps for the whole galaxy: the compact nuclei show relatively flat spectra, while the extended, diffuse component shows a steep spectrum. We fitted the radio SED of the nuclear regions using two different models: a continuous free-free medium model and a clumpy model. The continuous model can explain the SED of the nuclei assuming a population of relativistic electrons subjected to synchrotron, bremsstrahlung, and ionization losses. The clumpy model fits assuming relativistic electrons with negligible energy losses, and thermal fractions that are more typical of star-forming galaxies than those required for the continuous model. Our results confirm the usefulness of combining spatially resolved radio imaging at both MHz and GHz frequencies to characterize in detail the radio emission properties of LIRGs from the central 100 pc out to the kiloparsec galaxy-wide scales.
We present 154 MHz Murchison Widefield Array imaging observations and variability information for a sample of pulsars. Over the declination range $-80^{circ} < {delta} < 10^{circ}$ we detect 17 known pulsars with mean flux density greater than 0.3 Jy . We explore the variability properties of this sample on timescales of minutes to years. For three of these pulsars, PSR J0953+0755, PSR J0437-4715 and PSR J0630-2834 we observe interstellar scintillation and variability on timescales of greater than 2 minutes. One further pulsar, PSR J0034-0721, showed significant variability, the physical origins of which are difficult to determine. The dynamic spectra for PSR J0953+0755 and PSR J0437-4715 show discrete time and frequency structure consistent with diffractive interstellar scintillation and we present the scintillation bandwidth and timescales from these observations. The remaining pulsars within our sample were statistically non-variable. We also explore the spectral properties of this sample and find spectral curvature in pulsars PSR J0835-4510, PSR J1752-2806 and PSR J0437-4715.
Radio astronomical imaging using aperture synthesis telescopes requires deconvolution of the point spread function as well as calibration of the instrumental characteristics (primary beam) and foreground (ionospheric/atmospheric) effects. These effec ts vary in time and also across the field of view, resulting in directionally-dependent (DD), time-varying gains. The primary beam will deviate from the theoretical estimate in real cases at levels that will limit the dynamic range of images if left uncorrected. Ionospheric electron density variations cause time and position variable refraction of sources. At low frequencies and sufficiently high dynamic range this will also defocus the images producing error patterns that vary with position and also with frequency due to the chromatic aberration of synthesis telescopes. Superposition of such residual sidelobes can lead to spurious spectral signals. Field-based ionospheric calibration as well as peeling calibration of strong sources leads to images with higher dynamic range and lower spurious signals but will be limited by sensitivity on the necessary short-time scales. The results are improved images although some artifacts remain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا