ﻻ يوجد ملخص باللغة العربية
The XMM-Newton spectral-fit database (XMMFITCAT) is a catalogue of spectral fitting results for the source detections within the XMM-Newton Serendipitous source catalogue with more than 50 net (background-subtracted) counts per detector in the 0.5-10 keV energy band. Its most recent version, constructed from the latest version of the XMM-Newton catalogue, the 3XMM Data Release 4 (3XMM-DR4), contains spectral-fitting results for $gtrsim$ 114,000 detections, corresponding to $simeq$ 78,000 unique sources. Three energy bands are defined and used in the construction of XMMFITCAT: Soft (0.5-2 keV), Hard (2-10 keV), and Full (0.5-10 keV) bands. Six spectral models, three simple and three more complex models, were implemented and applied to the spectral data. Simple models are applied to all sources, whereas complex models are applied to observations with more than 500 counts (30%). XMMFITCAT includes best-fit parameters and errors, fluxes, and goodness of fit estimates for all fitted models. XMMFITCAT has been conceived to provide the astronomical community with a tool to construct large and representative samples of X-ray sources by allowing source selection according to spectral properties, as well as characterise the X-ray properties of samples selected in different wavelengths. We present in this paper the main details of the construction of this database, and summarise its main characteristics.
The XMM-Newton spectral-fit database is an ongoing ESA funded project aimed to construct a catalogue of spectral-fitting results for all the sources within the XMM-Newton serendipitous source catalogue for which spectral data products have been pipel
We present the results of a 500 ksec long XMM-Newton observation and a 120 ksec long quasi-simultaneous Chandra observation of the Narrow Line Seyfert 1 galaxy 1H0707-495 performed in 2010 September. Consistent with earlier results by Fabian et al. (
Thanks to the large collecting area (3 x ~1500 cm$^2$ at 1.5 keV) and wide field of view (30 across in full field mode) of the X-ray cameras on board the European Space Agency X-ray observatory XMM-Newton, each individual pointing can result in the d
Sky surveys produce enormous quantities of data on extensive regions of the sky. The easiest way to access this information is through catalogues of standardised data products. {em XMM-Newton} has been surveying the sky in the X-ray, ultra-violet, an
Most of the X-ray binary systems containing neutron stars classified as Atoll sources show two different spectral states, called soft and hard. Moreover, a large number of these systems show a reflection component relativistically smeared in their sp