ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantumness of Gaussian Discord: Experimental Evidence and Role of System-Environment Correlations

153   0   0.0 ( 0 )
 نشر من قبل Christian Peuntinger
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide experimental evidence of quantum features in bi-partite states classified as entirely classical according to a conventional criterion based on the Glauber P-function but possessing non-zero Gaussian quantum discord. Their quantum nature is experimentally revealed by acting locally on one part of the discordant state. Adding an environmental system purifying the state, we unveil the flow of quantum correlations within a global pure system using the Koashi-Winter inequality. We experimentally verify and investigate the counterintuitive effect of discord increase under the action of local loss and link it to the entanglement with the environment. For a discordant state generated by splitting a state in which the initial squeezing is destroyed by random displacements, we demonstrate the recovery of entanglement highlighting the role of system-environment correlations.



قيم البحث

اقرأ أيضاً

Quantum correlations represent a fundamental tool for studies ranging from basic science to quantum technologies. Different non-classical correlations have been identified and studied, as entanglement and discord. In view of future applications in th is letter we explore experimentally the rich geometry of Bell-diagonal states, measuring the values of entanglement and discord and highlighting the effect of decoherence in real experiments.
We experimentally determine the quantum discord present in two-mode squeezed vacuum generated by a four-wave mixing process in hot rubidium vapor. The frequency spectra of the discord, as well as the quantum and classical mutual information are also measured. In addition, the effects of symmetric attenuation introduced into both modes of the squeezed vacuum on the discord, the quantum mutual information and the classical correlations are examined experimentally. Finally, we show that due to the multi-spatial-mode nature of the four-wave mixing process, the quantum discord may exhibit sub- or superadditivity depending on which spatial channels are selected.
Quantum mechanics marks a radical departure from the classical understanding of Nature, fostering an inherent randomness which forbids a deterministic description; yet the most fundamental departure arises from something different. As shown by Bell [ 1] and Kochen-Specker [2], quantum mechanics portrays a picture of the world in which reality loses its objectivity and is in fact created by observation. Quantum mechanics predicts phenomena which cannot be explained by any theory with objective realism, although our everyday experience supports the hypothesis that macroscopic objects, despite being made of quantum particles, exist independently of the act of observation; in this paper we identify this behavior as classical. Here we show that this seemingly obvious classical behavior of the macroscopic world cannot be experimentally tested and belongs to the realm of ontology similar to the dispute on the interpretations of quantum mechanics [3,4]. For small systems such as a single photon [5] or a pair [6], it has been experimentally proven that a classical description cannot be sustained. Recently, there have also been experiments that claim to have demonstrated quantum behavior of relatively large objects such as interference of fullerenes [7], the violation of Leggett-Garg inequality in Josephson junction [8], and interference between two condensed clouds of atoms [9], which suggest that there is no limit to the size of the system on which the quantum-versus-classical question can be tested. These behaviors, however, are not sufficient to refute classical description in the sense of objective reality. Our findings show that once we reach the regime where an Avogadro number of particles is present, the quantum-versus-classical question cannot be answered experimentally.
Quantum information protocols can be realized using the `prepare and measure setups which do not require sharing quantum correlated particles. In this work, we study the equivalence between the quantumness in a prepare and measure scenario involving independent devices, which implements quantum random number generation, and the quantumness in the corresponding scenario which realizes the same task with spatially separated correlated particles. In particular, we demonstrate that quantumness of sequential correlations observed in the prepare and measure scenario gets manifested as superunsteerability, which is a particular kind of spatial quantum correlation in the presence of limited shared randomness. In this scenario consisting of spatially separated quantum correlated particles as resource for implementing the quantum random number generation protocol, we define an experimentally measurable quantity which provides a bound on the amount of genuine randomness generation. Next, we study the equivalence between the quantumness of the prepare and measure scenario in the presence of shared randomness, which has been used for implementing quantum random-access codes, and the quantumness in the corresponding scenario which replaces quantum communication by spatially separated quantum correlated particles. In this case, we demonstrate that certain sequential correlations in the prepare and measure scenario in the presence of shared randomness, which have quantumness but do not provide advantage for random-access codes, can be used to provide advantage when they are realized as spatial correlations in the presence of limited shared randomness. We point out that these spatial correlations are superlocal correlations, which are another kind of spatial quantum correlations in the presence of limited shared randomness, and identify inequalities detecting superlocality.
The quantification of quantum correlations (other than entanglement) usually entails laboured numerical optimization procedures also demanding quantum state tomographic methods. Thus it is interesting to have a laboratory friendly witness for the nat ure of correlations. In this Letter we report a direct experimental implementation of such a witness in a room temperature nuclear magnetic resonance system. In our experiment the nature of correlations is revealed by performing only few local magnetization measurements. We also compare the witness results with those for the symmetric quantum discord and we obtained a fairly good agreement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا