ترغب بنشر مسار تعليمي؟ اضغط هنا

Global Distribution of Ionizing and Recombining Plasmas in the Supernova Remnant G290.1$-$0.8

99   0   0.0 ( 0 )
 نشر من قبل Fumiyoshi Kamitsukasa
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the Suzaku results of the mixed-morphology supernova remnant (SNR) G290.1$-$0.8 (MSH 11-61A). The SNR has an asymmetric structure extended to the southeast and the northwest. In the X-ray spectra of the center and the northwest regions, we discover recombining plasma features with the strong Si Ly$alpha$ and radiative recombination continuum at $sim$ 2.7 keV. These features are the most significant in the northwest region, and the spectra are well-reproduced with a recombining plasma of $kT_{rm e} = 0.5$ keV. Whereas the spectra of other regions are expressed by an ionizing plasma of $kT_{rm e} = 0.6$ keV. The recombining plasma has over-solar abundances, while the ionizing plasma has roughly solar abundances. Hence they are likely ejecta and interstellar medium (ISM) origin, respectively. The recombining plasma in the northwest of G290.1$-$0.8 would be generated by a break-out of the supernova ejecta from a high density circumstellar medium to a low density ISM.



قيم البحث

اقرأ أيضاً

The temperatures of the plasma in the supernova remnants (SNRs) are initially very low just after the shock heating. The electron temperature (kT_{e}) increases quickly by Coulomb interaction, and then the energetic electrons gradually ionize atoms t o increase the ionization temperature (kT_{i}). The observational fact is that most of the young and middle-to-old aged SNRs have lower kT_{i} than kT_{e} after the shock heating. The temperature evolution in the shell-like SNRs has been explained by this ionizing plasma (IP) scenario. On the other hand, in the last decade, a significant fraction of the mixed morphology SNRs was found to exhibit a recombining plasma (RP) with higher kT_{i} than kT_{e}. The origin and the evolution mechanism of the RP SNRs have been puzzling. To address this puzzle, this paper presents the kT_{e} and kT_{i} profiles using the observed results by follow-up Suzaku observations, and then proposes a new scenario for the temperature and morphology evolutions in the IP and RP SNRs.
Recent X-ray study of middle-aged supernova remnants (SNRs) reveals strong radiative recombination continua (RRCs) associated with overionized plasmas, of which the origin still remains uncertain. We report our discovery of an RRC in the middle-aged SNR 3C 391. If the X-ray spectrum is fitted with a two-temperature plasma model in collisional ionization equilibrium (CIE), residuals of Si XIV Ly alpha line at 2.006 keV, S XVI Ly alpha line at 2.623 keV and the edge of RRC of Si XIII at 2.666 keV are found. The X-ray spectrum is better described by a composite model consisting of a CIE plasma and a recombining plasma (RP). The abundance pattern suggests that the RP is associated to the ejecta from a core-collapse supernova with a progenitor star of 15 solar mass. There is no significant difference of the recombining plasma parameters between the southeast region and the northwest region surrounded by dense molecular clouds. We also find a hint of Fe I K alpha line at 6.4 keV (~2.4 sigma detection) from the southeast region of the SNR.
We report new features of the typical mixed-morphology (MM) supernova remnant (SNR) W44. In the X-ray spectra obtained with Suzaku, radiative recombination continua (RRCs) of highly ionized atoms are detected for the first time. The spectra are well reproduced by a thermal plasma in a recombining phase. The best-fit parameters suggest that the electron temperature of the shock-heated matters cooled down rapidly from $sim1$,keV to $sim 0.5$,keV, possibly due to adiabatic expansion (rarefaction) occurred $sim20,000$ years ago. We also discover hard X-ray emission which shows an arc-like structure spatially-correlated with a radio continuum filament. The surface brightness distribution shows a clear anti-correlation with $^{12}$CO (J=2-1) emission from a molecular cloud observed with NANTEN2. While the hard X-ray is most likely due to a synchrotron enhancement in the vicinity of the cloud, no current model can quantitatively predict the observed flux.
Recent X-ray studies revealed over-ionized recombining plasmas (RPs) in a dozen mixed-morphology (MM) supernova remnants (SNRs). However, the physical process of the over-ionization has not been fully understood yet. Here we report on spatially resol ved spectroscopy of X-ray emission from W44, one of the over-ionized MM-SNRs, using XMM-Newton data from deep observations, aiming to clarify the physical origin of the over-ionization. We find that combination of low electron temperature and low recombination timescale is achieved in the region interacting with dense molecular clouds. Moreover, a clear anti-correlation between the electron temperature and the recombining timescale is obtained from each of the regions with and without the molecular clouds. The results are well explained if the plasma was over-ionized by rapid cooling through thermal conduction with the dense clouds hit by the blast wave of W44. Given that a few other over-ionized SNRs show evidence for adiabatic expansion as the major driver of the rapid cooling, our new result indicates that both processes can contribute to over-ionization in SNRs, with the dominant channel depending on the evolutionary stage.
Overionized recombining plasmas (RPs) have been discovered from a dozen of mixed- morphology (MM) supernova remnants (SNRs). However their formation process is still under debate. As pointed out by many previous studies, spatial variations of plasma temperature and ionization state provide clues to understand the physical origin of RPs. We report on a spatially resolved X-ray spectroscopy of W28, which is one of the largest MM SNRs found in our Galaxy. Two observations with Suzaku XIS cover the center of W28 to the northeastern rim where the shock is interacting with molecular clouds. The X-ray spectra in the inner regions are well reproduced by a combination of two-RP model with different temperatures and ionization states, whereas that in northeastern rim is explained with a single-RP model. Our discovery of the RP in the northeastern rim suggests an effect of thermal conduction between the cloud and hot plasma, which may be the production process of the RP. The X-ray spectrum of the north- eastern rim also shows an excess emission of the Fe I K{alpha} line. The most probable process to explain the line would be inner shell ionization of Fe in the molecular cloud by cosmic-ray particles accelerated in W28.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا