ﻻ يوجد ملخص باللغة العربية
The freezeout of gas-phase species onto cold dust grains can drastically alter the chemistry and the heating-cooling balance of protostellar material. In contrast to well-known species such as carbon monoxide (CO), the freezeout of various carriers of elements with abundances $<10^{-5}$ has not yet been well studied. Our aim here is to study the depletion of chlorine in the protostellar core, OMC-2 FIR 4. We observed transitions of HCl and H2Cl+ towards OMC-2 FIR 4 using the Herschel Space Observatory and Caltech Submillimeter Observatory facilities. Our analysis makes use of state of the art chlorine gas-grain chemical models and newly calculated HCl-H$_{2}$ hyperfine collisional excitation rate coefficients. A narrow emission component in the HCl lines traces the extended envelope, and a broad one traces a more compact central region. The gas-phase HCl abundance in FIR 4 is 9e-11, a factor of only 0.001 that of volatile elemental chlorine. The H2Cl+ lines are detected in absorption and trace a tenuous foreground cloud, where we find no depletion of volatile chlorine. Gas-phase HCl is the tip of the chlorine iceberg in protostellar cores. Using a gas-grain chemical model, we show that the hydrogenation of atomic chlorine on grain surfaces in the dark cloud stage sequesters at least 90% of the volatile chlorine into HCl ice, where it remains in the protostellar stage. About 10% of chlorine is in gaseous atomic form. Gas-phase HCl is a minor, but diagnostically key reservoir, with an abundance of <1e-10 in most of the protostellar core. We find the 35Cl/37Cl ratio in OMC-2 FIR 4 to be 3.2pm0.1, consistent with the solar system value.
We report the detection of a unique CO2 ice band toward the deeply embedded, low-mass protostar HOPS-68. Our spectrum, obtained with the Infrared Spectrograph onboard the Spitzer Space Telescope, reveals a 15.2 micron CO2 ice bending mode profile tha
We present the results of a suite of numerical simulations designed to explore the origin of the angular momenta of protostellar cores. Using the hydrodynamic grid code emph{Athena} with a sink implementation, we follow the formation of protostellar
We have revisited the chemistry of chlorine-bearing species in the diffuse interstellar medium with new observations of the HCl$^+$ molecular ion and new astrochemical models. Using the GREAT instrument on board SOFIA, we observed the $^2Pi_{3/2}, J
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the submillimeter dust continuum and H2D+ 1_{10}-1_{11} emission toward two evolved, potentially protostellar cores within the Ophiuchus molecular cloud, Oph A SM1 and SM1
We present azimuthally averaged metal abundance profiles from a full, comprehensive, and conservative re-analysis of the deep ($sim$800 ks total net exposure) textit{Chandra}/ACIS-S observation of the Centaurus cluster core (NGC,4696). After carefull