ترغب بنشر مسار تعليمي؟ اضغط هنا

Depletion of chlorine into HCl ice in a protostellar core

49   0   0.0 ( 0 )
 نشر من قبل Mihkel Kama
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The freezeout of gas-phase species onto cold dust grains can drastically alter the chemistry and the heating-cooling balance of protostellar material. In contrast to well-known species such as carbon monoxide (CO), the freezeout of various carriers of elements with abundances $<10^{-5}$ has not yet been well studied. Our aim here is to study the depletion of chlorine in the protostellar core, OMC-2 FIR 4. We observed transitions of HCl and H2Cl+ towards OMC-2 FIR 4 using the Herschel Space Observatory and Caltech Submillimeter Observatory facilities. Our analysis makes use of state of the art chlorine gas-grain chemical models and newly calculated HCl-H$_{2}$ hyperfine collisional excitation rate coefficients. A narrow emission component in the HCl lines traces the extended envelope, and a broad one traces a more compact central region. The gas-phase HCl abundance in FIR 4 is 9e-11, a factor of only 0.001 that of volatile elemental chlorine. The H2Cl+ lines are detected in absorption and trace a tenuous foreground cloud, where we find no depletion of volatile chlorine. Gas-phase HCl is the tip of the chlorine iceberg in protostellar cores. Using a gas-grain chemical model, we show that the hydrogenation of atomic chlorine on grain surfaces in the dark cloud stage sequesters at least 90% of the volatile chlorine into HCl ice, where it remains in the protostellar stage. About 10% of chlorine is in gaseous atomic form. Gas-phase HCl is a minor, but diagnostically key reservoir, with an abundance of <1e-10 in most of the protostellar core. We find the 35Cl/37Cl ratio in OMC-2 FIR 4 to be 3.2pm0.1, consistent with the solar system value.

قيم البحث

اقرأ أيضاً

We report the detection of a unique CO2 ice band toward the deeply embedded, low-mass protostar HOPS-68. Our spectrum, obtained with the Infrared Spectrograph onboard the Spitzer Space Telescope, reveals a 15.2 micron CO2 ice bending mode profile tha t cannot modeled with the same ice structure typically found toward other protostars. We develop a modified CO2 ice profile decomposition, including the addition of new high-quality laboratory spectra of pure, crystalline CO2 ice. Using this model, we find that 87-92% of the CO2 is sequestered as spherical, CO2-rich mantles, while typical interstellar ices show evidence of irregularly-shaped, hydrogen-rich mantles. We propose that (1) the nearly complete absence of unprocessed ices along the line-of-sight is due to the flattened envelope structure of HOPS-68, which lacks cold absorbing material in its outer envelope, and possesses an extreme concentration of material within its inner (10 AU) envelope region and (2) an energetic event led to the evaporation of inner envelope ices, followed by cooling and re-condensation, explaining the sequestration of spherical, CO2 ice mantles in a hydrogen-poor mixture. The mechanism responsible for the sublimation could be either a transient accretion event or shocks in the interaction region between the protostellar outflow and envelope. The proposed scenario is consistent with the rarity of the observed CO2 ice profile, the formation of nearly pure CO2 ice, and the production of spherical ice mantles. HOPS-68 may therefore provide a unique window into the protostellar feedback process, as outflows and heating shape the physical and chemical structure of protostellar envelopes and molecular clouds.
We present the results of a suite of numerical simulations designed to explore the origin of the angular momenta of protostellar cores. Using the hydrodynamic grid code emph{Athena} with a sink implementation, we follow the formation of protostellar cores and protostars (sinks) from the subvirial collapse of molecular clouds on larger scales to investigate the range and relative distribution of core properties. We find that the core angular momenta are relatively unaffected by large-scale rotation of the parent cloud; instead, we infer that angular momenta are mainly imparted by torques between neighboring mass concentrations and exhibit a log-normal distribution. Our current simulation results are limited to size scales $sim 0.05$~pc ($sim 10^4 rm AU$), but serve as first steps toward the ultimate goal of providing initial conditions for higher-resolution studies of core collapse to form protoplanetary disks.
We have revisited the chemistry of chlorine-bearing species in the diffuse interstellar medium with new observations of the HCl$^+$ molecular ion and new astrochemical models. Using the GREAT instrument on board SOFIA, we observed the $^2Pi_{3/2}, J = 5/2 - 3/2$ transition of HCl$^+$ near 1444 GHz toward the bright THz continuum source W49N. We detected absorption by diffuse foreground gas unassociated with the background source, and were able to thereby measure the distribution of HCl$^+$ along the sight-line. We interpreted the observational data using an updated version of an astrochemical model used previously in a theoretical study of Cl-bearing interstellar molecules. The abundance of HCl$^+$ was found to be almost constant relative to the related H$_2$Cl$^+$ ion, but the observed $n({rm H_2Cl^+})/n({rm HCl^+})$ abundance ratio exceeds the predictions of our astrochemical model by an order-of-magnitude. This discrepancy suggests that the rate of the primary destruction process for ${rm H_2Cl^+}$, dissociative recombination, has been significantly overestimated. For HCl$^+$, the model predictions can provide a satisfactory fit to the observed column densities along the W49N sight-line while simultaneously accounting for the ${rm OH^+}$ and ${rm H_2O^+}$ column densities.
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the submillimeter dust continuum and H2D+ 1_{10}-1_{11} emission toward two evolved, potentially protostellar cores within the Ophiuchus molecular cloud, Oph A SM1 and SM1 N. The data reveal small-scale condensations within both cores, with mass upper limits of M <~ 0.02M_Sun (~ 20 M_Jup). The SM1 condensation is consistent with a nearly-symmetric Gaussian source with a width of only 37 AU. The SM1N condensation is elongated, and extends 500 AU along its major axis. No evidence for substructure is seen in either source. A Jeans analysis indicates these sources are unlikely to fragment, suggesting that both will form single stars. H2D+ is only detected toward SM1N, offset from the continuum peak by ~150-200 AU. This offset may be due to either heating from an undetected, young, low luminosity protostellar source or first hydrostatic core, or HD (and consequently H2D+) depletion in the cold centre of the condensation. We propose that SM1 is protostellar, and that the condensation detected by ALMA is a warm (T ~ 30-50 K) accretion disk. The less concentrated emission of the SM1N condensation suggests that it is still starless, but we cannot rule out the presence of a low-luminosity source, perhaps surrounded by a pseudodisk. These data reveal observationally the earliest stages of the formation of circumstellar accretion regions, and agree with theoretical predictions that disk formation can occur very early in the star formation process, coeval with or just after the formation of a first hydrostatic core or protostar.
We present azimuthally averaged metal abundance profiles from a full, comprehensive, and conservative re-analysis of the deep ($sim$800 ks total net exposure) textit{Chandra}/ACIS-S observation of the Centaurus cluster core (NGC,4696). After carefull y checking various sources of systematic uncertainties, including the choice of the spectral deprojection method, assumptions about the temperature structure of the gas, and uncertainties in the continuum modeling, we confirm the existence of a central drop in the abundances of the `reactive elements Fe, Si, S, Mg, and Ca, within $rlesssim$10 kpc. The same drops are also found when analyzing the textit{XMM-Newton}/EPIC data ($sim$150 ks). Adopting our most conservative approach, we find that, unlike the central drops seen for Fe, Si, S, Mg and Ca, the abundance of the `nonreactive element Ar is fully consistent with showing no central drop. This is further confirmed by the significant ($>3sigma$) central radial increase of the Ar/Fe ratio. Our results corroborate the previously proposed `dust depletion scenario , in which central metal abundance drops are explained by the deposition of a significant fraction of centrally cooled reactive metals into dust grains present in the central regions of the Centaurus cluster. This is also supported by the previous findings that the extent of the metal abundance drops in NGC,4696 broadly coincides with the infrared dust emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا