ترغب بنشر مسار تعليمي؟ اضغط هنا

The hybrid, coronal lines nova V5588 Sgr (2011 N.2) and its six repeating secondary maxima

43   0   0.0 ( 0 )
 نشر من قبل Ulisse Munari
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The outburst of Nova Sgr 2011 N.2 (=V5588 Sgr) was followed with optical and near-IR photometric and spectroscopic observations for 3.5 years, beginning shortly before the maximum. V5588 Sgr is located close to Galactic center, suffering from E(B-V)=1.56 (+/-0.1) extinction. The primary maximum was reached at V=12.37 on UT 2011 April 2.5 (+/-0.2), and the underlying smooth decline was moderately fast with t(2,V)=38 and t(3,V)=77 days. On top of an otherwise normal decline, six self-similar, fast evolving and bright secondary maxima (SdM) appeared in succession. Only very few other novae have presented so clear secondary maxima. Both the primary maximum and all SdM occurred at later times with increasing wavelengths, by amounts in agreement with expectations from fireball expansions. The radiative energy released during SdM declined following an exponential pattern, while the breadth of individual SdM and the time interval between them widened. Emission lines remained sharp (FWHM~1000 km/s) throughout the whole nova evolution, with the exception of a broad pedestal with a trapezoidal shape (extending for 3600 km/sec at the top and 4500 km/sec at the bottom) which was only seen during the advanced decline from SdM maxima and was absent in between SdM. V5588 Sgr at maximum light displayed a typical FeII-class spectrum which did not evolve into a nebular stage. About 10 days into the decline from primary maximum, a typical high-ionization He/N-class spectrum appeared and remained visible simultaneously with the FeII-class spectrum, qualifying V5588 Sgr as a rare hybrid nova. While the FeII-class spectrum faded into oblivion, the He/N-class spectrum developed strong [FeX] coronal lines.

قيم البحث

اقرأ أيضاً

133 - S. N. Shore 2011
The nova T Pyx was observed with high resolution spectroscopy (R ~ 65000) spectroscopy, beginning 1 day after discovery of the outburst and continuing through the last visibility of the star at the end of May 2011. The interstellar absorption lines o f Na I, Ca II, CH, CH$^+$, and archival H I 21 cm emission line observations have been used to determine a kinematic distance. Interstellar diffuse absorption features have been used to determine the extinction independent of previous assumptions. Sample Fe-peak line profiles show the optical depth and radial velocity evolution of the discrete components. We propose a distance to T Pyx $geq$4.5kpc, with a strict lower limit of 3.5 kpc (the previously accepted distance). We derive an extinction, E(B-V)$approx0.5pm$0.1, that is higher than previous estimates. The first observation, Apr. 15, displayed He I, He II, C III, and N III emission lines and a maximum velocity on P Cyg profiles of the Balmer and He I lines of $approx$2500 km s$^{-1}$ characteristic of the fireball stage. These ions were undetectable in the second spectrum, Apr. 23, and we use the recombination time to estimate the mass of the ejecta, $10^{-5}f$M$_odot$ for a filling factor $f$. Numerous absorption line systems were detected on the Balmer, Fe-peak, Ca II, and Na I lines, mirrored in broader emission line components, that showed an accelerated displacement in velocity. We also show that the time sequence of these absorptions, which are common to all lines and arise only in the ejecta, can be described by recombination front moving outward in the expanding gas without either a stellar wind or circumstellar collisions.
The onset of the Rush to the Poles of polar-crown prominences and their associated coronal emission is a harbinger of solar maximum. Altrock (Solar Phys. 216, 343, 2003) showed that the Rush was well-observed at 1.15 Ro in the Fe XIV corona at the Sa cramento Peak site of the National Solar Observatory prior to the maxima of Cycles 21 to 23. The data show that solar maximum in those cycles occurred when the center line of the Rush reached a critical latitude of 76 +- 2{deg}. Furthermore, in the previous three cycles solar maximum occurred when the highest number of Fe XIV emission features per day (averaged over 365 days and both hemispheres) first reached latitudes 20 +- 1.7{deg}. Cycle 24 displays an intermittent Rush that is only well-defined in the northern hemisphere. In 2009 an initial slope of 4.6{deg}/yr was found in the north, compared to an average of 9.4 +- 1.7 {deg}/yr in the previous cycles. An early fit to the Rush would have reached 76{deg} at 2014.6. However, in 2010 the slope increased to 7.5{deg}/yr (an increase did not occur in the previous three cycles). Extending that rate to 76 +- 2{deg} indicates that the solar maximum in the northern hemisphere already occurred at 2011.6 +- 0.3. In the southern hemisphere the Rush to the Poles, if it exists, is very poorly defined. A linear fit to several maxima would reach 76{deg} in the south at 2014.2. In 1999, persistent Fe XIV coronal emission known as the extended solar cycle appeared near 70{deg} in the north and began migrating towards the equator at a rate 40% slower than the previous two solar cycles. However, in 2009 and 2010 an acceleration occurred. Currently the greatest number of emission features is at 21{deg} in the North and 24{deg}in the South. This indicates that solar maximum is occurring now in the North but not yet in the South.
We present 5-28 micron SOFIA FORECAST spectroscopy complemented by panchromatic X-ray through infrared observations of the CO nova V5668 Sgr documenting the formation and destruction of dust during 500 days following outburst. Dust condensation comme nced by 82 days after outburst at a temperature of 1090 K. The condensation temperature indicates that the condensate was amorphous carbon. There was a gradual decrease of the grain size and dust mass during the recovery phase. Absolute parameter values given here are for an assumed distance of 1.2 kpc. We conclude that the maximum mass of dust produced was 1.2 x 10-7 solar masses if the dust was amorphous carbon. The average grain radius grew to a maximum of 2.9 microns at a temperature of 720 K around day 113 when the shell visual optical depth was Tau = 5.4. Maximum grain growth was followed by followed by a period of grain destruction. X-rays were detected with Swift from day 95 to beyond day 500. The Swift X-ray count rate due to the hot white dwarf peaked around day 220, when its spectrum was that of a kT = 35 eV blackbody. The temperature, together with the super-soft X-ray turn-on and turn-off times, suggests a WD mass of 1.1 solar masses. We show that the X-ray fluence was sufficient to destroy the dust. Our data show that the post-dust event X-ray brightening is not due to dust destruction, which certainly occurred, as the dust is optically thin to X-rays.
We present and analyze optical photometry and high resolution SALT spectra of the symbiotic recurrent nova V3890 Sgr at quiescence. The orbital period, P=747.6 days has been derived from both photometric and spectroscopic data. Our double-line spectr oscopic orbits indicate that the mass ratio is q=M_g/M_WD=0.78+/-0.05, and that the component masses are M_WD=1.35+/-0.13 Msun, and M_g=1.05+/-0.11 Msun. The orbit inclination is approximately 67-69 degr. The red giant is filling (or nearly filling) its Roche lobe, and the distance set by its Roche lobe radius, d=9 kpc, is consistent with that resulting from the giant pulsation period. The outburst magnitude of V3890 Sgr is then very similar to those of RNe in the Large Magellanic Cloud. V3890 Sgr shows remarkable photometric and spectroscopic activity between the nova eruptions with timescales similar to those observed in the symbiotic recurrent novae T CrB and RS Oph and Z And-type symbiotic systems. The active source has a double-temperature structure which we have associated with the presence of an accretion disc. The activity would be then caused by changes in the accretion rate. We also provide evidence that V3890 Sgr contains a CO WD accreting at a high, a few 1e-8 - 1e-7 Msun/yr, rate. The WD is growing in mass, and should give rise to a Type Ia supernova within about 1,000,000 yrs - the expected lifetime of the red giant.
The million degree plasma of the solar corona must be supplied by the underlying layers of the atmosphere. The mechanism and location of energy release, and the precise source of coronal plasma, remain unresolved. In earlier work we pursued the idea that warm plasma is supplied to the corona via direct heating of the chromosphere by nanoflares, contrary to the prevailing belief that the corona is heated in-situ and the chromosphere is subsequently energized and ablated by thermal conduction. We found that single (low-frequency) chromospheric nanoflares could not explain the observed intensities, Doppler-shifts, and red/blue asymmetries in Fe XII and XIV emission lines. In the present work we follow up on another suggestion that the corona could be powered by chromospheric nanoflares that repeat on a timescale substantially shorter than the cooling/draining timescale. That is, a single magnetic strand is re-supplied with coronal plasma before the existing plasma has time to cool and drain. We perform a series of hydrodynamic experiments and predict the Fe XII and XIV line intensities, Doppler-shifts, and red/blue asymmetries. We find that our predicted quantities disagree dramatically with observations and fully developed loop structures cannot be created by intermediate- or high-frequency chromospheric nanoflares. We conclude that the mechanism ultimately responsible for producing coronal plasma operates above the chromosphere, but this does not preclude the possibility of a similar mechanism powering the chromosphere; extreme examples of which may be responsible for heating chromospheric plasma to transition region temperatures (e.g. type II spicules).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا