ﻻ يوجد ملخص باللغة العربية
Current approaches to semantic image and scene understanding typically employ rather simple object representations such as 2D or 3D bounding boxes. While such coarse models are robust and allow for reliable object detection, they discard much of the information about objects 3D shape and pose, and thus do not lend themselves well to higher-level reasoning. Here, we propose to base scene understanding on a high-resolution object representation. An object class - in our case cars - is modeled as a deformable 3D wireframe, which enables fine-grained modeling at the level of individual vertices and faces. We augment that model to explicitly include vertex-level occlusion, and embed all instances in a common coordinate frame, in order to infer and exploit object-object interactions. Specifically, from a single view we jointly estimate the shapes and poses of multiple objects in a common 3D frame. A ground plane in that frame is estimated by consensus among different objects, which significantly stabilizes monocular 3D pose estimation. The fine-grained model, in conjunction with the explicit 3D scene model, further allows one to infer part-level occlusions between the modeled objects, as well as occlusions by other, unmodeled scene elements. To demonstrate the benefits of such detailed object class models in the context of scene understanding we systematically evaluate our approach on the challenging KITTI street scene dataset. The experiments show that the models ability to utilize image evidence at the level of individual parts improves monocular 3D pose estimation w.r.t. both location and (continuous) viewpoint.
We propose a system that learns to detect objects and infer their 3D poses in RGB-D images. Many existing systems can identify objects and infer 3D poses, but they heavily rely on human labels and 3D annotations. The challenge here is to achieve this
We present BlockGAN, an image generative model that learns object-aware 3D scene representations directly from unlabelled 2D images. Current work on scene representation learning either ignores scene background or treats the whole scene as one object
The rapid progress in 3D scene understanding has come with growing demand for data; however, collecting and annotating 3D scenes (e.g. point clouds) are notoriously hard. For example, the number of scenes (e.g. indoor rooms) that can be accessed and
This paper explores self-supervised learning of amodal 3D feature representations from RGB and RGB-D posed images and videos, agnostic to object and scene semantic content, and evaluates the resulting scene representations in the downstream tasks of
We propose a new 3D holistic++ scene understanding problem, which jointly tackles two tasks from a single-view image: (i) holistic scene parsing and reconstruction---3D estimations of object bounding boxes, camera pose, and room layout, and (ii) 3D h