ترغب بنشر مسار تعليمي؟ اضغط هنا

A Two Qubit Logic Gate in Silicon

217   0   0.0 ( 0 )
 نشر من قبل Menno Veldhorst
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum computation requires qubits that can be coupled and realized in a scalable manner, together with universal and high-fidelity one- and two-qubit logic gates cite{DiVincenzo2000, Loss1998}. Strong effort across several fields have led to an impressive array of qubit realizations, including trapped ions cite{Brown2011}, superconducting circuits cite{Barends2014}, single photonscite{Kok2007}, single defects or atoms in diamond cite{Waldherr2014, Dolde2014} and silicon cite{Muhonen2014}, and semiconductor quantum dots cite{Veldhorst2014}, all with single qubit fidelities exceeding the stringent thresholds required for fault-tolerant quantum computing cite{Fowler2012}. Despite this, high-fidelity two-qubit gates in the solid-state that can be manufactured using standard lithographic techniques have so far been limited to superconducting qubits cite{Barends2014}, as semiconductor systems have suffered from difficulties in coupling qubits and dephasing cite{Nowack2011, Brunner2011, Shulman2012}. Here, we show that these issues can be eliminated altogether using single spins in isotopically enriched siliconcite{Itoh2014} by demonstrating single- and two-qubit operations in a quantum dot system using the exchange interaction, as envisaged in the original Loss-DiVincenzo proposal cite{Loss1998}. We realize CNOT gates via either controlled rotation (CROT) or controlled phase (CZ) operations combined with single-qubit operations. Direct gate-voltage control provides single-qubit addressability, together with a switchable exchange interaction that is employed in the two-qubit CZ gate. The speed of the two-qubit CZ operations is controlled electrically via the detuning energy and we find that over 100 two-qubit gates can be performed within a two-qubit coherence time of 8 textmu s, thereby satisfying the criteria required for scalable quantum computation.



قيم البحث

اقرأ أيضاً

With qubit measurement and control fidelities above the threshold of fault-tolerance, much attention is moving towards the daunting task of scaling up the number of physical qubits to the large numbers needed for fault tolerant quantum computing. Her e, quantum dot based spin qubits may offer significant advantages due to their potential for high densities, all-electrical operation, and integration onto an industrial platform. In this system, the initialisation, readout, single- and two-qubit gates have been demonstrated in various qubit representations. However, as seen with other small scale quantum computer demonstrations, combining these elements leads to new challenges involving qubit crosstalk, state leakage, calibration, and control hardware which provide invaluable insight towards scaling up. Here we address these challenges and demonstrate a programmable two-qubit quantum processor in silicon by performing both the Deutsch-Josza and the Grover search algorithms. In addition, we characterise the entanglement in our processor through quantum state tomography of Bell states measuring state fidelities between 85-89% and concurrences between 73-80%. These results pave the way for larger scale quantum computers using spins confined to quantum dots.
160 - W. Huang , C. H. Yang , K. W. Chan 2018
Universal quantum computation will require qubit technology based on a scalable platform, together with quantum error correction protocols that place strict limits on the maximum infidelities for one- and two-qubit gate operations. While a variety of qubit systems have shown high fidelities at the one-qubit level, superconductor technologies have been the only solid-state qubits manufactured via standard lithographic techniques which have demonstrated two-qubit fidelities near the fault-tolerant threshold. Silicon-based quantum dot qubits are also amenable to large-scale manufacture and can achieve high single-qubit gate fidelities (exceeding 99.9%) using isotopically enriched silicon. However, while two-qubit gates have been demonstrated in silicon, it has not yet been possible to rigorously assess their fidelities using randomized benchmarking, since this requires sequences of significant numbers of qubit operations ($gtrsim 20$) to be completed with non-vanishing fidelity. Here, for qubits encoded on the electron spin states of gate-defined quantum dots, we demonstrate Bell state tomography with fidelities ranging from 80% to 89%, and two-qubit randomized benchmarking with an average Clifford gate fidelity of 94.7% and average Controlled-ROT (CROT) fidelity of 98.0%. These fidelities are found to be limited by the relatively slow gate times employed here compared with the decoherence times $T_2^*$ of the qubits. Silicon qubit designs employing fast gate operations based on high Rabi frequencies, together with advanced pulsing techniques, should therefore enable significantly higher fidelities in the near future.
Coherent dressing of a quantum two-level system provides access to a new quantum system with improved properties - a different and easily tuneable level splitting, faster control, and longer coherence times. In our work we investigate the properties of the dressed, donor-bound electron spin in silicon, and probe its potential for the use as quantum bit in scalable architectures. The two dressed spin-polariton levels constitute a quantum bit that can be coherently driven with an oscillating magnetic field, an oscillating electric field, by frequency modulating the driving field, or by a simple detuning pulse. We measure coherence times of $T_{2rho}^*=2.4$ ms and $T_{2rho}^{rm Hahn}=9$ ms, one order of magnitude longer than those of the undressed qubit. Furthermore, the use of the dressed states enables coherent coupling of the solid-state spins to electric fields and mechanical oscillations.
Quantum computation requires many qubits that can be coherently controlled and coupled to each other. Qubits that are defined using lithographic techniques are often argued to be promising platforms for scalability, since they can be implemented usin g semiconductor fabrication technology. However, leading solid-state approaches function only at temperatures below 100 mK, where cooling power is extremely limited, and this severely impacts the perspective for practical quantum computation. Recent works on spins in silicon have shown steps towards a platform that can be operated at higher temperatures by demonstrating long spin lifetimes, gate-based spin readout, and coherent single-spin control, but the crucial two-qubit logic gate has been missing. Here we demonstrate that silicon quantum dots can have sufficient thermal robustness to enable the execution of a universal gate set above one Kelvin. We obtain single-qubit control via electron-spin-resonance (ESR) and readout using Pauli spin blockade. We show individual coherent control of two qubits and measure single-qubit fidelities up to 99.3 %. We demonstrate tunability of the exchange interaction between the two spins from 0.5 up to 18 MHz and use this to execute coherent two-qubit controlled rotations (CROT). The demonstration of `hot and universal quantum logic in a semiconductor platform paves the way for quantum integrated circuits hosting the quantum hardware and their control circuitry all on the same chip, providing a scalable approach towards practical quantum information.
Resonant exchange qubits are a promising addition to the family of experimentally implemented encodings of single qubits using semiconductor quantum dots. We have shown previously that it ought to be straightforward to perform a CPHASE gate between t wo resonant exchange qubits with a single exchange pulse. This approach uses energy gaps to suppress leakage rather than conventional pulse sequences. In this paper we present analysis and simulations of our proposed two-qubit gate subject to charge and Overhauser field noise at levels observed in current experiments. Our main result is that we expect implementations of our two-qubit gate to achieve high fidelities, with errors at the percent level and gate times comparable to single-qubit operations. As such, exchange-coupled resonant exchange qubits remain an attractive approach for quantum computing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا