ﻻ يوجد ملخص باللغة العربية
The Octans association is one of several young stellar moving groups recently discovered in the Solar neighbourhood, and hence a valuable laboratory for studies of stellar, circumstellar disc and planetary evolution. However, a lack of low-mass members or any members with trigonometric parallaxes means the age, distance and space motion of the group are poorly constrained. To better determine its membership and age, we present the first spectroscopic survey for new K and M-type Octans members, resulting in the discovery of 29 UV-bright K5-M4 stars with kinematics, photometry and distances consistent with existing members. Nine new members possess strong Li I absorption, which allow us to estimate a lithium age of 30-40 Myr, similar to that of the Tucana-Horologium association and bracketed by the firm lithium depletion boundary ages of the Beta Pictoris (20 Myr) and Argus/IC 2391 (50 Myr) associations. Several stars also show hints in our medium-resolution spectra of fast rotation or spectroscopic binarity. More so than other nearby associations, Octans is much larger than its age and internal velocity dispersion imply. It may be the dispersing remnant of a sparse, extended structure which includes some younger members of the foreground Octans-Near association recently proposed by Zuckerman and collaborators.
We intended to compile the most complete catalog of bona fide members and candidate members of the beta Pictoris association, and to measure their rotation periods and basic properties from our own observations, public archives, and exploring the lit
The goal of this paper is to increase the membership list of the Chamaeleon star forming region and the $epsilon$ Cha moving group, in particular for low-mass stars and substellar objects. We extended the search region significantly beyond the dark c
When determining absolute ages of identifiably young stellar populations, results strongly depend on which stars are studied. Cooler (K, M) stars typically yield ages that are systematically younger than warmer (A, F, G) stars by a factor of two. I e
We have used fibre spectroscopy to establish cluster membership and examine pre-main-sequence (PMS) lithium depletion for low-mass stars (spectral types F to M) in the sparse young (~30 Myr) cluster IC 4665. We present a filtered candidate list of 40
Low-mass members of young stellar associations exhibit a wide spread of rotation periods. Such a spread originates from distributions of masses and initial rotation periods. However, multiplicity can also play a significant role. We investigate the r