ﻻ يوجد ملخص باللغة العربية
Due to fundamental limitations of accelerators, only cosmic rays can give access to centre-of- mass energies more than one order of magnitude above those reached at the LHC. In fact, extreme energy cosmic rays (1018 eV - 1020 eV) are the only possibility to explore the 100 TeV energy scale in the years to come. This leap by one order of magnitude gives a unique way to open new horizons: new families of particles, new physics scales, in-depth investigations of the Lorentz symmetries. However, the flux of cosmic rays decreases rapidly, being less than one particle per square kilometer per year above 1019 eV: one needs to sample large surfaces. A way to develop large-effective area, low cost, detectors, is to build a solar panel-based device which can be used in parallel for power generation and Cherenkov light detection. Using solar panels for Cherenkov light detection would combine power generation and a non-standard detection device.
Increasing interest towards the observation of the highest energy cosmic rays has motivated the development of new detection techniques. The properties of the Cherenkov photon pulse emitted in the atmosphere by these very rare particles indicate low-
The Latin American Giant Observatory (LAGO) is a distributed cosmic ray observatory that spans over Latin America in a wide range of latitudes and altitudes. One of the main goals of LAGO is to study atmospheric radiation and space weather through th
The detection of photons above 10 keV through MeV and GeV energies is challenging due to the penetrating nature of the radiation, which can require large detector volumes, resulting in correspondingly high background. In this energy range, most detec
The Sun is the nearest astrophysical source with a very intense emission in the X-ray band. The study of energetic events, such as solar flares, can help us to understand the behaviour of the magnetic field of our star. There are in the literature nu
The geomagnetic field causes not only the East-West effect on the primary cosmic rays but also affects the trajectories of the secondary charged particles in the shower, causing their lateral distribution to be stretched along certain directions. Thu