ترغب بنشر مسار تعليمي؟ اضغط هنا

Network motifs emerge from interconnections that favor stability

165   0   0.0 ( 0 )
 نشر من قبل Marco Tulio Angulo
 تاريخ النشر 2014
والبحث باللغة English




اسأل ChatGPT حول البحث

Network motifs are overrepresented interconnection patterns found in real-world networks. What functional advantages may they offer for building complex systems? We show that most network motifs emerge from interconnections patterns that best exploit the intrinsic stability characteristics of individual nodes. This feature is observed at different scales in a network, from nodes to modules, suggesting an efficient mechanism to stably build complex systems.



قيم البحث

اقرأ أيضاً

Distributed averaging is one of the simplest and most studied network dynamics. Its applications range from cooperative inference in sensor networks, to robot formation, to opinion dynamics. A number of fundamental results and examples scattered thro ugh the literature are gathered here and originally presented, emphasizing the deep interplay between the network interconnection structure and the emergent global behavior.
We introduce the nested canalyzing depth of a function, which measures the extent to which it retains a nested canalyzing structure. We characterize the structure of functions with a given depth and compute the expected activities and sensitivities o f the variables. This analysis quantifies how canalyzation leads to higher stability in Boolean networks. It generalizes the notion of nested canalyzing functions (NCFs), which are precisely the functions with maximum depth. NCFs have been proposed as gene regulatory network models, but their structure is frequently too restrictive and they are extremely sparse. We find that functions become decreasingly sensitive to input perturbations as the canalyzing depth increases, but exhibit rapidly diminishing returns in stability. Additionally, we show that as depth increases, the dynamics of networks using these functions quickly approach the critical regime, suggesting that real networks exhibit some degree of canalyzing depth, and that NCFs are not significantly better than functions of sufficient depth for many applications of the modeling and reverse engineering of biological networks.
Investigating the frequency and distribution of small subgraphs with a few nodes/edges, i.e., motifs, is an effective analysis method for static networks. Motif-driven analysis is also useful for temporal networks where the spectrum of motifs is sign ificantly larger due to the additional temporal information on edges. This variety makes it challenging to design a temporal motif model that can consider all aspects of temporality. In the literature, previous works have introduced various models that handle different characteristics. In this work, we compare the existing temporal motif models and evaluate the facets of temporal networks that are overlooked in the literature. We first survey four temporal motif models and highlight their differences. Then, we evaluate the advantages and limitations of these models with respect to the temporal inducedness and timing constraints. In addition, we suggest a new lens, event pairs, to investigate temporal correlations. We believe that our comparative survey and extensive evaluation will catalyze the research on temporal network motif models.
Intermolecular bonding of 3-aminopropanol (3-AP) molecules is discussed in comparison to 2-aminopropanol (2-AP) and 2-aminoethamol (2-AE). The consideration is based on the results of nonempirical quantum chemical simulations of the molecular cluster s carried out at the MP2/6-31+G(d,p) level. Particular attention is paid to the formation of variously ordered 3-AP aggregates, which can be doubled or bracelet rings, extended chains, ribbons, or double helices, impossible in the case of any close amino alcohol analogue, but favorable for the solvation of diverse either hydrophilic or hydrophobic species.
Transfer entropy is an established method for quantifying directed statistical dependencies in neuroimaging and complex systems datasets. The pairwise (or bivariate) transfer entropy from a source to a target node in a network does not depend solely on the local source-target link weight, but on the wider network structure that the link is embedded in. This relationship is studied using a discrete-time linearly-coupled Gaussian model, which allows us to derive the transfer entropy for each link from the network topology. It is shown analytically that the dependence on the directed link weight is only a first approximation, valid for weak coupling. More generally, the transfer entropy increases with the in-degree of the source and decreases with the in-degree of the target, indicating an asymmetry of information transfer between hubs and low-degree nodes. In addition, the transfer entropy is directly proportional to weighted motif counts involving common parents or multiple walks from the source to the target, which are more abundant in networks with a high clustering coefficient than in random networks. Our findings also apply to Granger causality, which is equivalent to transfer entropy for Gaussian variables. Moreover, similar empirical results on random Boolean networks suggest that the dependence of the transfer entropy on the in-degree extends to nonlinear dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا